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1. Purpose 

For anyone who is uncomfortable with 
references to ‘infinity’ in mathematics, this 
article offers simple alternatives to the word 
‘infinity’ and to the symbol for infinity, ∞. It 
also provides some historical background to 
the topic and insights into the underlying 
logical issues. 

Is this article relevant to you? It depends on 
what you believe about numbers. 

2. Do you believe in infinity? 

People hold different basic beliefs about 
numbers and some are compatible with an 
absolute, actual infinity while others are not. 
These four questions will indicate if you are 
someone who might prefer to eliminate uses 
of the word ‘infinity’ and its symbols (e.g. 
∞, ℵ, 𝜔), as I do. 

1. Do you think there is a number so big that 
it is the biggest and no number is bigger? 
It’s a number you cannot add 1 to and 
make a bigger number. (Here we are 
talking about numbers in principle, not 
about numbers we currently can represent 
on paper or with a computer.) 

2. Do you think there is a number so big that 
there is no number less than it to which 
you could add 1 and reach the number? 
Somehow it is out of reach in that sense. 

3. Do you think that it is meaningful to talk 
about the total number of elements in an 
infinite set or infinite sequence of numbers, 
even though they are endless? (Here again 
we are talking about sets and sequences 
that are infinite in principle, so in this 
question it doesn’t matter whether they 
could exist in practice.) 

4. Do you think it is meaningful to say that 
one infinite sequence is longer than 
another infinite sequence, even though 
both are endless? 

If you answered ‘no’ to all or most of these 
questions, as I did, then you are probably not 
someone who believes in what is often called 
‘actual infinity’. 

You may not have noticed before, but some of 
the notation currently taught in schools and 
universities makes references to infinity as if 
actual infinity exists. This can lull us into 
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thinking that actual infinity exists even if our 
basic beliefs, when considered directly and 
explicitly, conflict with that. 

For me, this is a matter of mental hygiene. I 
don’t want to have misleading words and 
symbols in my mind. I also don’t want to 
endorse ideas that I think are wrong, even 
though it is usually only a matter of principle. 

If you don’t believe in actual infinity and would 
like to learn more about how to eliminate 
unintended references to it, then please read 
on. 

3. Alternative words and notation 

The main objective here is to avoid using 
words, phrases, or symbols that suggest – 
even subtly – that there is a number, or 
something like it, that is the biggest possible 
number, bigger than all others, a sort of Last 
Chance Saloon for the numbers. 

The ∞ symbol is used often to express ranges 
of Real numbers that are not limited in one or 
both directions. For example [0, ∞) is the set 
of real numbers that, in set builder notation, 
would be expressed as: 

{𝑥 ∶  ℝ | 𝑥 ≥ 0} 

and pronounced as ‘for all Real numbers 
greater than or equal to zero.’ 

The alternative to using the symbol for infinity 
in this situation is just to use the set builder 
notation instead. Since the range is unlimited 
at the top there is simply no need to mention 
the top of the range at all. The same principle 
applies to ranges with no lower limit. 

The ∞ symbol also appears in expressions of 
the sum of an infinite series. For example: 

෍
1

𝑟ଶ

ஶ

௥ୀଵ

 

can be rewritten slightly as: 

෍
1

𝑟ଶ

௥ ∈ ℕభ

 

pronounced as ‘the sum for all Naturals from 1 
of …’ 

Set builder notation can be used here too to 
express more complicated ranges for the 
series.  

A similar situation exists for definite integrals. 

න 𝑓(𝑥)𝑑𝑥
ஶ

௔

 

becomes, 

න 𝑓(𝑥)𝑑𝑥
 

௫ ஹ௔

 

while 

න 𝑓(𝑥)𝑑𝑥
ஶ

ିஶ

 

becomes simply,  

න 𝑓(𝑥)𝑑𝑥
 

௫ ∈ ℝ

 

The idea is simple: if there are no limits then 
don't try to state some. 

 

With limits of functions there are also easy 
ways to drop the ∞ symbol. 

lim
௫ → ஶ

  
1

𝑥
= 0 

becomes 

lim
௫ →

  
1

𝑥
= 0 

or, 

lim
௫ ↑

  
1

𝑥
= 0 

Pronounced ‘the limit as 𝑥 rises without end…’ 

Similarly, 

lim
௫ → ିஶ

  
1

𝑥
= 0 

 

becomes 

lim
← ௫

  
1

𝑥
= 0 

or, 

lim
௫↓

  
1

𝑥
= 0 

Pronounced as ‘the limit as 𝑥 falls without end 
…’ 
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Where there is no limit, this should be stated 
clearly. For example: 

lim
଴ ← ௫

  
1

𝑥
 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 

Similarly, never talk about the number of 
Natural numbers overall because the Naturals 
are an infinite set. Never talk about the 
number of Rational or Real numbers, even in 
any finite interval, because, again, those are 
infinite sets. 

4. Some finer points 

Eliminating the appearance of infinity in your 
mathematical writing highlights some points 
that are usually implicit. 

4.1 Convergent series 
It is widely understood and often written that: 

෍
1

2௞

ஶ

௞ୀଵ

= 1 

But what does the summing notation mean 
when the ∞ symbol is used? The situation is 
clear in an example without the ∞ symbol, 
such as 

෍
1

2௞

ଷ

௞ୀଵ

=
1

2ଵ
+

1

2ଶ
+

1

2ଷ
 

but it would be wrong to say that, 

෍
1

2௞

ஶ

௞ୀଵ

=
1

2ଵ
+

1

2ଶ
+ ⋯ +

1

2ஶିଵ
+

1

2ஶ
 

because ∞ is not a number. 

It would also be wrong to say that the sum in 
the infinite case is the value we get if we keep 
on adding more terms in an unlimited way. 

Mathematical induction can be used to show 
that the sum calculated in this way would not 
reach 1. At each stage in such a calculation 
the sum so far will be 

෍
1

2௞

ே

௞ୀଵ

 

When 𝑁 is 1, the sum is 0.5. That means there 
is a gap between the sum and 1. This is the 
base case. 

The effect of adding another term is always to 
halve the gap. For any other value of 𝑁, if 
there is a gap between the sum at that stage 
and 1, then there will be a gap at the next 
stage, the sum to 𝑁 + 1. 

So, there is a gap between the sum and 1 
when 𝑁 = 1 and whenever there is a gap 
there is a gap when one more term is added, 
and so there is a gap for all Natural numbers1. 
The sum never actually reaches 1. 

This argument also clarifies that adding more 
and more terms to the series does not lead us 
to some final value. Each further addition 
changes the value so far, just a tiny bit. 

(In this argument, as with all reasoning about 
the infinite and infinitesimal, the numbers we 
think about are not always numbers that we 
can write down or represent on a computer. 
The numbers might be too big, or too small, or 
too accurate to be represented with an 
existing number writing system. The numbers 
we are thinking about are theoretical, idealized 
numbers. Perhaps we could write them if we 
invented a suitable system or a bigger 
computer. This is traditional in mathematics.) 

The right way to understand the summing 
notation when infinity is involved is as a limit. 
The limit idea is usually implicit but can be 
made explicit: 

lim
௡↑

 ( ෍
1

2௞

௞∈ଵ..௡

) = 1 

Being a limit means that the sum of the series 
to 𝑛 gets closer and closer to 1 as 𝑛 rises, so 
that no matter how close to 1 you want it to 
be there is a value for 𝑛 that gets you even 
closer. There is no other value that is the limit 
in this sense. 

What it does not necessarily mean is that the 
sum of the series actually arrives at 1 if you 
increase 𝑛 far enough – ‘to infinity’. 

We could abbreviate the ‘limit’ notation in 
these situations implicitly or explicitly. The 
implicit style might look like this: 

 
1 Proponents of infinity have an argument to get 
around this type of proof that involves asserting 
that there are numbers so big that they don’t have 
a number that is one less than them. This blocks 
the inductive argument – but of course only if you 
agree that such numbers exist. 
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෍
1

2௞

௞ ∈ ℕభ

= 1 

Here, the fact that a limit is involved is not 
made clear and you have to know that when 
an unlimited set like the Natural numbers is 
involved then a limit is implied. 

An explicit abbreviation style could use 
something other than the usual ‘=’ sign. A 
number of symbols could be used. The symbol 
‘∼’ is sometimes used to mean ‘asymptotic’, 
while arrows (→ and perhaps also ←) are often 
used to mean ‘approaches’, and ‘approaches 
the limit’ is sometimes written as ‘≐’. The style 
might look like this: 

෍
1

2௞

௞ ∈ ℕభ

∼ 1 

The same issue of implicit limits arises when a 
series is written by listing the first few terms 
then writing ‘…’ to indicate endless 
continuation in the same pattern. 

Again, the special symbol could be used to 
highlight the use of a limit. Typical applications 
are the binomial theorem with fractional 
powers, Taylor expansions, and Maclaurin 
expansions. For example, 

𝑒 ∼ 1 + 1 +
1

2!
+

1

3!
+

1

4!
+ ⋯ 

and 

cos[𝑥] ∼ 1 −
𝑥ଶ

2!
+

𝑥ସ

4!
−

𝑥଺

6!
+ ⋯ 

The idea of these being asymptotic rather than 
exactly equal agrees nicely to our experience 
of using series like these to compute numbers. 
They give us an algorithm that can be 
continued as far as necessary to calculate the 
decimal representation of the number to as 
many decimal places as we want. 

4.2 Recurring decimals 
Recurring decimals are another situation 
where a limit is implicit. 

Which is true? 

0.999999 … = 1 𝑜𝑟 0.999999 … ≠ 1 

Alternatively written as: 

0. 9̇ = 1 𝑜𝑟 0. 9̇ ≠ 1 

Majority published opinion today is that the 
equality is true, justified by an implicit limit 
indicated by the two dot notations (the ‘…’ and 
the dots over digits). 

Without this the equality would not be true. 
The gap argument used above that employs 
mathematical induction would show that 
adding another digit never eliminates the gap 
between the value so far and 1, which is the 
limit. The sum would also fail to settle to a 
single final value as further terms are added. 

The use of the limit could be made explicit 
using the full limit notation or with the 
‘asymptotic’ symbol or something like it. For 
example: 

1 ∼ 0. 9̇ 

1

2
= 0.5 

1

3
∼ 0. 3̇ 

1

4
= 0.25 

1

5
= 0.2 

1

6
∼ 0.16̇ 

1

7
∼ 0. 1̇42857̇ 

1

8
= 0.125 

1

9
∼ 0. 1̇ 

1

10
= 0.1 

4.3 Comparing numerosity 
The number of numbers in a finite set is a 
meaningful concept. The number of numbers 
in an infinite set is not. There is no number 
that represents the number of numbers in an 
infinite set. Some care over language is 
needed to avoid suggesting that there is. 

We cannot say: 

‘The number of Natural numbers is infinity.’ 

We can say: 

‘The set of Natural numbers is an infinite set.’ 

‘There are infinitely many Natural numbers.’ 

Less obviously, we cannot say: 

‘The number of Rational numbers is greater 
than the number of Natural numbers.’ 

‘There are more Rational numbers than 
Natural numbers.’ 

We can say: 

‘The Natural numbers are a subset of the 
Integers.’ 
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‘The even Natural numbers are less dense than 
the Natural numbers.’ 

Since it is meaningless to talk about the 
number of elements in an infinite set we 
cannot compare the number of elements in 
infinite sets2. 

However, there are alternative approaches to 
comparisons. 

One is that we can try to compare the density 
of numbers in comparable intervals. A number 
of ways to do this have been devised for 
subsets of the Natural numbers, including 
Natural Density (also known as Asymptotic 
Density or Arithmetic Density), the 
Schnirelmann Density, and the Logarithmic 
Density. 

Here is a simple and rather limited example 
using an idea of my own. 

I suggest doing it using the relative number of 
numbers within an interval carefully chosen to 
allow a fair comparison. 

This can be illustrated using the example of 
Naturals versus even Naturals. We need to 
choose an interval that starts where the two 
sets have a common element and ends at a 
higher point where they have a common 
element. However, it needs to include the 
lower end but exclude the upper end. 

In symbols, let ℕ be the set of Natural 
numbers and ℕ௘ be the set of even Natural 
numbers, and let 𝑎 and 𝑏 be elements in both 
sets, such that 𝑎 < 𝑏, then the two subsets 
whose cardinality we want to compare are: 

{𝑥 ∶  ℕ | 𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏}  

and 

{𝑥 ∶  ℕ௘ | 𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏}. 

The relative number of elements within each in 
that interval is calculated as a fraction, like 
this: 

𝑟 =
#{𝑥 ∶  ℕ |𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏}

#{𝑥 ∶  ℕ௘ |𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏}
 

For example, if 𝑎 = 0 and 𝑏 = 10, then the 
relative density in that interval is: 

 
2 This did not stop Georg Cantor from constructing 
an elaborate system that supposedly does just this. 
Not surprisingly, it leads to some strange 
conclusions. 

𝑟 =
#{𝑥 ∶  ℕ |0 ≤ 𝑥 ∧ 𝑥 < 10}

#{𝑥 ∶  ℕ௘ |0 ≤ 𝑥 ∧ 𝑥 < 10}
 

=
10

5
 

= 2 

In this example the ratio will always be 2 for 
all choices of 𝑎 and 𝑏 such that: 

𝑎 ∈ ℕ ∧ 𝑎 ∈ ℕ௘ ∧ 𝑏 ∈ ℕ ∧ 𝑏 ∈ ℕ௘ ∧ 𝑎 < 𝑏 

However, in other examples this is not 
necessarily going to be the case so a general 
definition of this idea of relative density would 
have to be for specific intervals. 

Also, not all number sets can be compared in 
this way since they have to have some 
common elements and there are also sets 
where the ratio is not defined. For example, 
the ratio between Real numbers and Integers 
is infinite, as is the ratio between the Rational 
numbers and Integers. 

Rational numbers and Real numbers are 
infinitely dense, so comparisons of their 
densities are not possible. We know they are 
infinitely dense because, in between any two 
distinct Rational numbers there lies at least 
one more Rational number, their average. The 
same applies to Real numbers. Irrational 
numbers are also infinitely dense because, 
between any pair of distinct Rational numbers 
lies at least one Irrational number, being the 
number that divides the difference between 
the two Rationals in the ratio √2: 2 − √2.  

Another way to compare infinite sets of 
numbers is by looking for where one contains 
the other. For example, all Natural numbers 
are Integers, but not all Integers are Natural 
numbers. In that sense, the Integers are a 
‘bigger’ set, even though we cannot put a 
number on the size of either set. Similarly, one 
can argue that Rational numbers are a strict 
subset of the Reals. 

5. A perspective on number 
systems 

My personal preferred perspective on infinite 
number systems is that they are an 
idealization that is helpful in the design and 
assessment of practical number systems. 
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In this perspective, numbers are not the same 
thing as the labels we apply to them, such as 
‘10’, ‘101101’, and ‘A6’. 

Number systems should be rooted in shared, 
everyday experiences. These are experiences 
that are universal and understandable to all. 
We use numbers to observe and communicate 
‘how many’ and ‘how much’, and this 
distinction is reflected even in the grammar of 
many of our natural languages. They reflect 
our two uses of numbers, which are counting 
and measuring. Neither is more fundamental 
than the other. 

5.1 Numbers for counting 
The Natural numbers are an idealized system 
for counting objects. You could imagine 
counting pebbles as you put them into a box, 
or sheep as they enter a field. 

The Natural numbers are idealized in that 
there are no gaps that would prevent us from 
counting particular collections and because 
they go on forever upwards. This idealized 
system never runs out of numbers, and in that 
sense alone is infinite. The idealization makes 
it possible to reason about the results an ideal 
number system should be able to produce, 
without the inconvenience of having to check 
for going out of range at every stage. It does 
not necessarily reflect an infinite reality. 

These abstract, idealized numbers are unique 
and sequenced yet have no names. 

Practical implementations of number systems 
for counting, such as binary representations 
using 16 bits on a digital computer, or decimal 
notation written on paper with a pen, give 
permanent labels to the Natural numbers, but 
only to a few of them. Examples of such labels 
in three different systems are 5 (decimal), 101 
(binary), and V (Roman). These are known as 
numeral systems. 

Modern numeral systems are cleverly designed 
so that the labels are not just arbitrary names, 
like ‘George’ or ‘Bob’, but are instead 
structured strings of symbols that we can 
compute with. For example, you might know 
from memory that 2+3=5, but asked for 23 x 
28 you would probably use a method based on 
the digits used to label the numbers to work 
out the answer, 644. 

These permanent labels are not like the 
variables names that mathematicians introduce 
when talking about arbitrary or as-yet-
unknown numbers. For example, when a 
mathematician writes ‘Let 𝑚 and 𝑛 be Natural 
numbers such that…’ the 𝑚 and 𝑛 are 
temporary names, not permanent labels for 
the numbers. Perhaps later the mathematician 
will deduce the permanent labels that go with 
those two names and they will be ‘3’ and ‘6’. 

The Natural numbers have an obvious starting 
point for counting, but no end point. 

In numeral systems for counting we usually 
label a subset of the Naturals, starting at the 
starting point with 0 (or 1 depending on your 
preference) and labelling all the naturals from 
there upwards until the labels run out. For 
example, with 16 binary digits that usually 
means starting at zero and running out at 
65,535 (in decimal notation). 

For numbers written on paper with a pen there 
is no hard end to the labels we can write, but 
it does quickly become impractical to write 
very long numbers by hand or even to print 
them on paper so, in practice, we do not 
continue endlessly. (Perhaps there is a case for 
idealized decimals and practical decimals.) 

5.2 Numbers for relative counting 
The Integers provide an idealized system for 
counting objects relative to a starting point. 
You could imagine having a box that already 
contains many pebbles but then counting 
pebbles going out of it (subtract 1 each time) 
and pebbles coming in (add 1 each time) 
starting from zero. By the end of your session 
the pebbles in the box might have reduced, 
giving you a negative count, or increased, 
giving a positive count, or stayed the same, 
leaving you on zero. 

The Integers are idealized in that they also 
have no gaps and they go on forever both up 
and down. They never run out. This time there 
is no natural starting point for counting, so a 
starting point has to be part of the idealized 
design. 

These abstract, idealized numbers are unique 
and sequenced yet have no names. 

Again, practical implementations of relative 
counting numbers give labels, but only to a 
few of the idealized Integers. With binary 
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digits, one of those digits might be used to say 
if the number is positive or negative, with the 
other digits being used for magnitude. Again, 
it is usual to give a label to the starting point 
(e.g. zero) and to all the Integers around it, 
until the labels run out. 

5.3 Numbers for measuring 
The Real numbers provide an idealized system 
for measuring quantities, with direction. They 
are idealized in that they go on without end 
both up and down, and because there are no 
gaps at all. We can imagine measuring using 
an idealized line (the edge of something 
perfectly straight and endlessly long) where 
every point on that line has a Real number 
associated with it. These points have no width 
at all. They are locations, not areas or 
intervals. 

To say there are no gaps means that, 
wherever on an idealized number line you 
might happen to point (with the edge of an 
idealized pointer) there is a Real number to go 
with that point. I think this captures our 
intuition about there being a Real number for 
every magnitude. 

In contrast, practical implementations of 
measuring numbers give labels to only a few 
of those Reals, and there are gaps all over the 
place. Not only is it not possible to label Reals 
because they are too high or too low, but it is 
also impossible to label every Real in even a 
tiny interval. 

What we do instead is to use a wide variety of 
designs to spread out the labelled points in 
useful ways. For example, floating point 
representations are good for very small 
numbers or very large ones, but not for adding 
very small to very large. Do that and the very 
small numbers get lost when rounding off. 

Some systems aim to spread the labelled 
points so that the gaps between them increase 
as you get further from zero, perhaps even 
keeping the percentage rounding errors 
roughly constant. 

Another design involves representing numbers 
not by a simple label, but by an algorithm 
capable of generating a decimal representation 
of the number accurate to any desired (but 
practical) number of digits. Easy examples are 
fractions, such as 1 3ൗ  generating as many 3s 

as you like in the decimal expansion. Less 
obvious examples are roots, values from 
trigonometrical functions, 𝑒, and 𝜋, all of 
which can be calculated from converging 
series. Alan Turing provided a list of types of 
number that are ‘computable’ like this. 

There are also notations that label very, very 
large numbers, such as towers of exponentials, 
Knuth’s arrows, and Bowers’ operators. This 
far out, the gaps between labelled points are 
also gigantic. 

In addition to having a designated starting 
point for measuring (‘zero’) as with the 
Integers, the Reals are also usually given a 
second point that represents a single unit 
away from the starting point (what we would 
usually call 0 to 1). 

In most labelling systems for Real numbers the 
labels we use for Natural numbers are reused 
to label Integer multiples of the unit Real 
number. 

The ability to reason about Real numbers 
mathematically provides a way to assess the 
performance of practical implementations of 
measuring numbers. For example, if you know 
from mathematics with the idealized Reals that 
the result of a calculation should be a 
particular value, and a computer using 
practical numbers gives a result that is a few 
percent out, then you know that the computed 
numbers are wrong. The compromises made 
in designing the practical number system and 
operations on those numbers have perhaps led 
to unacceptable inaccuracy. 

This perspective on number systems and the 
role of idealized, infinite number systems is 
very different from the famous, published 
ideas that you can read about today. These 
famous formulations date from about a 
century ago and typically reflect a desire to 
write axioms (i.e. assumptions) from which all 
other properties of numbers and basic 
operations on them can be deduced. These 
were to take mathematics away from intuition 
and the real world and make it a purely logical 
endeavour (except for the initial assumptions). 

There was also a long held view that counting 
was somehow more fundamental than 
measuring and that, therefore, what was 
needed was a way to define measuring 
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numbers using only counting numbers. The 
logical gymnastics used in the attempt are 
elaborate, highly artificial, and hard to follow. 

I think it is clear that the Naturals, Integers, 
and Reals are idealizations (though you may 
not agree with me on exactly how) and that 
our numbering systems are limited in 
comparison. 

5.4 Interlinking number sets 
Having said that we have invented number 
systems for counting and for measuring, how 
can we account for the fact that we often 
regard Natural numbers as a subset of the 
Integers, which in turn are a subset of the 
Rationals, which are a subset of the Reals. 

The link between the measuring and counting 
numbers is a matter of design since we choose 
to define a unit length and assign the counting 
numbers to the unit lengths. In practical 
number systems we ensure that labels match 
up. For example, 2 corresponds to two unit 
lengths, which might also be written as 2.00. 

6. Alternative beliefs 

If, like me, you answered ‘no’ to the questions 
at the start of this article then you might be 
puzzled that anyone at all answers ‘yes’ to 
them. 

Surprisingly, the main published position in 
mathematics today is consistent with ‘yes’ to 
most if not all. It is frequently stated, without 
reference to limits, that: 

0. 9̇ = 1 

and that 

෍
1

2௞

ஶ

௞ୀଵ

= 1 

and that the number of Natural numbers is the 
same as the number of even Natural Numbers. 

It wasn’t always like this but Georg Cantor was 
successful, eventually, in building a following 
for his ideas to such an extent that many 
believe them without question today, even if 
they know nothing of the background. 

Cantor was a German mathematician who 
lived from 1845 to 1918. He believed that God 
was infinite (in the sense that Cantor 

understood infinity) and that his theories about 
infinite sets were God’s ideas, revealed to 
Cantor by God. 

Cantor believed that you could assert anything 
you liked in mathematics as long it was proven 
from accepted assumptions and no 
contradictions appeared. 

Cantor was driven to promote his ideas to 
mathematicians and theologians, even writing 
to the Pope. Despite opposition from many 
and recurrent bouts of depression that put him 
in hospital, he toiled on, eventually winning 
some supporters. 

The number of people in the world who fully 
understand Cantor’s arguments must be quite 
small because there are many papers, written 
in German, and they are extremely 
complicated and obscure. The style of 
argument is typical of mathematics of the 
time, with long arguments devoid of any sense 
of direction, and a deluge of terminology. 

Cantor’s position probably gained an 
advantage by comparison with alternatives at 
the time. The idea of using logic to deduce 
conclusions in mathematics was a fresh and 
attractive one, with some of Cantor’s 
opponents preferring intuition. 

I suspect that Cantor’s ideas would have been 
forgotten quickly if he had faced opposition 
from just one alternative position, backed by a 
group of people in agreement and with status, 
that relied on logic but started with 
assumptions that were acceptable to most 
people. 

The war over his ideas went on for decades 
and we can see the residual bitterness and 
irrationality of that war even today in books 
and internet forum postings. People unhappy 
with the ‘establishment’ position sometimes 
angrily describe it as moronic, while the 
‘establishment’ describes their critics as cranks. 
This is a debate that is making no progress. 

6.1 Problems with recurring decimals 
One battleground is recurring decimals. The 
assertion that 0. 9̇ = 1 is often seen as 
something that many people have ‘trouble 
accepting’. There have even been studies 
published exploring the cognitive problems 
that this causes for people and trying to find 
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ways to convince people more effectively that 
the equality is true. 

These attempts to convince rarely mention the 
implicit use of limits, which would be correct 
and should be convincing. This may be 
because it is very hard to find a definition of 
the recurring decimals notation that explicitly 
mentions the use of limits. 

Instead, attempted proofs typically use algebra 
to try to show that the assertion is true 
without mentioning the implicit use of limits. 

What is striking about such claimed proofs that 
0. 9̇ = 1 is the contrast between the confident 
tone of the writer and the ease with which the 
flaws can be seen. 

One argument starts with the assertion that: 

1

3
= 0.33333 … 

Multiply both sides by 3 and you get: 

1 = 0.99999 … 

The problem here is that it starts by assuming 
something that is almost the same as what is 
being ‘proved’. 

The gap argument would show that (without 
using a limit): 

1

3
≠ 0.33333 … 

and that, in general, rational fractions are not 
exactly equal in value to the infinitely recurring 
decimals they generate. So, the argument 
starts from a false assertion (if not using 
limits). 

Another argument for the equality is that the 
sum from adding in each additional digit 9 
converges to a limit of 1 and, therefore, its 
sum is equal to 1. 

But limits and equality are not the same thing 
and it is possible for a series to converge to a 
limit without actually reaching it. 

Yet another argument for equality says that: 

1 − 0. 9̇ = 0. 0̇ 

And that: 

0. 0̇ = 0 

So there is no difference between 1 and 0. 9̇ 
and, therefore, they must be equal. 

Again, the inequality is assumed away with the 
initial assumption. Start instead with the finite 
equality: 

1 − 0.9 = 0.1 

Take this a step further: 

1 − 0.99 = 0.01 

Keep on adding ‘9’ digits without limit. The 
difference on the right continues to exist but of 
course gets smaller and smaller. 

This is in fact the gap argument in another 
form and demonstrates the opposite 
conclusion i.e. inequality. 

One last example of an argument that is, at 
least, controversial, goes like this. Let 𝑥 = 0. 9̇. 
Multiply both sides of this little equation by 10 
to get: 

10𝑥 = 9. 9̇ 

Subtract the first equation from the second to 
get: 

9𝑥 = 9 

And, finally, divide both sides by 9 to arrive at: 

𝑥 = 1 

Again, the argument starts with a dodgy 
assumption (if no implicit limits are involved). 
If instead the same process is followed for 
ever increasing 9s the conclusion is different. 

Let 𝑥 = 0.9 and then multiply both sides by 10. 

10𝑥 = 9 

Subtract the first equation from the second, 
giving: 

9𝑥 = 8.1 

Divide through by 9: 

𝑥 = 0.9 

Repeat this for ever increasing numbers of 
decimal digits and at no point will magic occur. 
The letter 𝑥 stubbornly refuses to change its 
form or value. 

The lack of explicit references to limits either 
in the notation or in common explanations of 
the notation has caused a great deal of 
confusion. The omission probably occurred 
because many people thought that limits were 
not necessary because a value is reached 
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when the digits of a decimal number are 
continued ‘to infinity.’ 

To show that: 

0. 9̇ = 1 

it is only necessary to explain that the notation 
means the limit of the sequence 0.9, 0.99, 
0.999, etc is 1, and then prove that 1 is indeed 
the limit of this sequence. In outline, this 
involves showing that the difference between 
the sequence so far and 1 can be made as 
small as you like by adding enough digits, and 
that adding even more digits will not make the 
gap larger again. This is obvious when you 
know that the gap gets cut by 90% when each 
new digit is added. 

6.2 Limit ordinals 
The idea of a limit ordinal illustrates the style 
of argumentation at the heart of the long-
running war. 

An ordinal is a number used to express an 
element’s place in a sequence. A limit ordinal 
is supposedly one of these numbers that is so 
big that somehow it has no predecessor. That 
is, there is no other number that you can add 
one to and get the ordinal limit. 

Even more bizarrely, having asserted the 
existence of limit ordinals, Cantor went on to 
say that it was perfectly reasonable to add 1 to 
a limit ordinal. 

This is a very odd idea, but one obvious 
reason for proposing it strongly is that it fends 
off arguments by mathematical induction (such 
as the gap argument above) that otherwise 
would have been devastating. 

6.3 Cardinality of infinite sets 
The arguments around the so-called 
‘cardinality’ of infinite sets illustrate another 
argument tactic at the heart of the infinity war. 

The word ‘cardinality’ applied to finite sets 
means the number of elements in the set. This 
cannot work for infinite sets because there is 
no number that can be used for their size. 
Cardinality in the usual sense is not definable 
for sets of unlimited size. 

The only way to talk about ‘cardinality’ for 
infinite sets is to apply the word to a different 
idea when talking about those infinite sets. 

Changing the meaning of a word is something 
that humans do quite often and it can lead to 
confusion and reasoning mistakes. 

Two finite sets are said to have equal 
cardinality if they both have the same number 
of elements. For example: 

#{1,2,3,4,5} = 5 

#{2,4,6,8,10} = 5 

#{1,2,3,4,5} = #{2,4,6,8,10} 

The symbol # before a set means ‘the number 
of elements of’ i.e. its cardinality. 

For infinite sets a different idea has become 
established, thanks to Cantor. In this case, two 
sets are said to have equal cardinality if there 
is a bijection between them. This is a function 
that links the elements one-to-one with no 
gaps. 

This is true for finite sets. For example, 

{1 ↦ 2, 2 ↦ 4, 3 ↦ 6, 4 ↦ 8, 5 ↦ 10} 

is a bijection that compares and equates the 
two sets above. 

Cantor’s new idea was to apply the same 
criterion to infinite sets. For example: 

{1 ↦ 2, 2 ↦ 4, 3 ↦ 6, 4 ↦ 8, … } 

This definition of equal cardinality leads to 
some odd sounding conclusions. For example, 
mathematicians today typically say that the 
cardinality of the set of Natural numbers is the 
same as the cardinality of the set of even 
Natural numbers. The reason is, as shown 
above, that there is a bijection between them. 
This bijection can be written as a rule and 
using the rule you can find the Natural number 
that goes with each even Natural number, and 
vice versa. 

Intuitively it seems obvious that there should 
be twice as many Naturals as even Naturals if 
any such statement can be made at all. What 
is going on here and how can we get around 
this problem? 

The issue is still simply that cardinality in the 
usual sense does not apply to infinite sets so 
the comparison is meaningless. 

However, if we want something that agrees 
with our intuition then we can look at the 
density of numbers within a set relative to the 
Natural numbers. 
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6.4 The ambiguity of ‘countable’ 
The word ‘countable’ is another one whose 
shifting meaning has confused the arguments 
about infinite sets. 

The ambiguity of the word ‘countable’ comes 
about because, in ordinary conversation, we 
tend to act as if something can be counted 
completely if we can identify discrete units that 
we can start counting. We do this because 
what we are counting is usually finite and so if 
we can start counting then we can imagine 
finishing the count, although it may take too 
long to be practical. For example, sheep can 
be counted. Money can be counted. If asked 
whether atoms can be counted we might say 
that, in theory, they could be but not in 
practice unless you have a very small sample 
or you are happy with an approximate answer. 

When we come to talk about counting sets of 
items whose size is unlimited then this breaks 
down. We can identify discrete items and start 
counting them but we cannot count them all, 
even in principle. They are ‘countable’ in the 
sense that we can start counting them, but not 
‘countable’ in the sense that we can 
completely count them. 

The sense in which ‘countable’ is currently 
used in mathematics is that something is 
‘countable’ if we can start counting, even if we 
could never finish. That is not the same as 
‘countable’ in ordinary conversation. 

7. Conclusion 

It’s not necessary to refer to infinity if you 
don’t want to, and if your beliefs are 
inconsistent with an ‘actual infinity’ you may 
prefer to go that way. 

The origins of some of today’s best known 
ideas about infinity are surprisingly mystical 
and that is, perhaps, another reason for 
adopting infinity-free writing and thinking 
habits. 

8. Appendix: Density of numbers 

8.1 Density of Real numbers 
Consider any two Real numbers that are not 
equal: 

𝑟ଵ > 𝑟ଶ 

The mean of the two will be between them 
and not equal to either. It will also be a Real 
number because there are no gaps on the Real 
number line. 

So, for any two Real numbers that are not 
equal there is at least one Real number that 
lies between them. We can always squeeze 
one more in. 

The unlimited supply of Real numbers can be 
looked at in another way. Consider the interval 
[0,1). Using the decimal notation the number 
of numbers in this range that can be 
represented with just one digit after the 
decimal point is 10. The set is: 

{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 

The number of numbers that can represented 
using two digits after the decimal point is 100, 
and in general the number of numbers that 
can be represented with 𝑑 digits after the 
decimal point is 10ௗ.  

As 𝑑 increases, the number of numbers that 
can be represented rises very rapidly and if 𝑑 
increases without limit then so does the 
number of numbers that can be represented. 

Not all the Reals can be represented exactly by 
decimal numbers, so the number of Reals is 
even more than that suggested by the 
argument based on decimal numbers. 

8.2 Density of Rational numbers 
Consider any two Rational numbers that are 
not equal: 

𝑝ଵ

𝑞ଵ
<

𝑝ଶ

𝑞ଶ
 

The mean of the two will be between them 
and is given by: 

𝑝ଵ
𝑞ଵ

+
𝑝ଶ
𝑞ଶ

2
 

which is, 
𝑝ଵ𝑞ଶ + 𝑝ଶ𝑞ଵ

2𝑞ଵ𝑞ଶ
 

and also a rational number because both 
numerator and denominator are integers. 

So, for any non-equal rational numbers there 
is at least one other rational number that lies 
between them. 
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Alternatively, consider for example just the 
interval [0,1]. We can imagine beginning to list 
the rational numbers in this interval as follows: 

0

1
,
0

2
,
0

3
,
0

4
, … 

1

1
,
1

2
,
1

3
,
1

4
, … 

2

2
,
2

3
,
2

4
,
2

5
, … 

3

3
,
3

4
,
3

5
,
3

6
, … 

… … … 

This is an infinite sequence of infinite 
sequences. Doing the same for another 
interval of the same length would involve just 
adding an integer to each of these numbers, 
so [0,1] serves as an adequate example. 

Consequently, the relative density between 
Rational numbers and Integers is infinite. 

8.3 Density of Irrational numbers 
Rational and Real numbers are frustratingly 
endless. Not only is there at least one rational 
number between every pair of rational 
numbers, but there are also at least two 
irrational numbers between any two rational 
numbers. Instead of interpolating with the 
average of the two rationals, split that gap 
√2: 2 − √2 and 2 − √2: √2 and you get two 
irrationals in that gap. 

This perhaps creates a problem for Dedekind’s 
idea of finding gaps by splitting the Rationals 
using irrational dividing points. You might find 
a gap, but does that mean there is one 
irrational number there or two? The least 
upper bound property is shared by the 
integers, and by the integers divided by 10, 
divided by 100, and so on.  

 


