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1. Readers and objectives 
This publication is for anyone interested in 
what mathematics is and how it can be 
better. This includes people who use 
mathematics, are learning mathematics, 
teach mathematics, and people who are 
making mathematical innovations, often 
working as professional mathematicians of 
some kind. 

The idea of mathematical models is 
extended by focusing on practical matters 
of efficiency and flexibility. Along the way 
some important points are made about 
number systems and applications. 

Philosophical old-chestnuts are answered 
from the perspective described. There are 
also suggestions for improved practice of 
mathematics. 

2. Modelling 
This section explains the perspective of 
mathematics as a collection of modelling 
toolkits, and illustrates it with some 
examples. 

2.1 Models 

Models are familiar in various forms. A toy 
car is a model of a real car. It is like the 
real thing but smaller and more 
convenient. This is an example of a 
physical model. 
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Various physical models were used by 
Barnes Wallis and his colleagues as they 
developed the famous bouncing bomb 
used in the Dambusters raid in 1943. 
These included a set up at home firing 
small balls at a tub of water, a larger 
version in a ship tank at the National 
Physical Laboratory, and model dams built 
outside at the Building Research 
Laboratory. 

Wallis also used mathematical models to 
help with the design. These only 
represented certain important 
characteristics of the bomb’s trajectory, 
for example, linking the way the bomb 
was dropped with its trajectory over the 
water. Johnson (1998) provides 
fascinating detail of this project and 
mathematical models of objects 
ricocheting off water. 

If Wallis and his colleagues had been 
working today they would undoubtedly 
have used computers to simulate aspects 
of the bomb’s behaviour, turning 
mathematical models into predictions that 
unfold over time. 

A mathematical model is abstract, non-
physical, and defined rather than built. 
Words and symbols are used to define the 
objects used in the model and their 
properties. There are also inference rules 
that enable people (or artificial computers) 
to make deductions from the model. 

Mathematical models give us the ability to 
deduce what we should believe, but in a 
conditional way. For example, if we 
believe statements X, Y, and Z then what 
other statements should we believe 
because they can be deduced from what 
is already believed? 

Just like physical models, mathematical 
models are usually convenient 
simplifications of reality and allow us to 
make inferences about the behaviour of 
the real system from the behaviour of the 
model. 

Inference rules include some that just 
define our terms (e.g. definitions of AND, 
OR, NOT, and IMPLIES) and some that 
capture the behaviour of a system we 
wish to model. 

Accurately representing particular aspects 
of the behaviour of a system we want to 
model is almost always a goal of 
modelling. The properties of the model 
are not an arbitrary matter. We select 
them in an effort to make accurate 
models. 

Some models are more accurate than 
others. Some are so accurate that we 
hardly notice we are using a model. For 
example, if I count 10 sheep into a 
previously empty pen and then, later, 
count 11 sheep out of the pen then I will 
be surprised. Objects like sheep that can 
be counted and normally obey the rules of 
arithmetic, do so with such reliability that 
discrepancies are never attributed to a 
fault in the model. I would assume that I 
made a mistake in one of my counts, or 
that someone put an extra sheep into the 
pen while I was away, or that a new lamb 
was born. 

In contrast, some systems are so hard to 
model accurately that differences between 
the model and reality are expected. 
Models of human behaviour, such as a 
model to predict if a person will commit a 
crime in the next year, are unreliable. 
They can still provide useful information, 
but we do not expect perfect predictions 
as we would with counting sheep. 

2.2 Natural and artificial 
applications 

Mathematics can be used to model natural 
and artificial systems. I suspect that 
modelling artificial systems has probably 
been the more important contribution to 
human well-being. 

Mathematics is often called the queen of 
the sciences because it partners with 
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science and is used extensively in 
modelling the natural world. It is used 
throughout astronomy, physics, chemistry, 
and biology, for example, where it is often 
possible to build models that very 
precisely match physical reality. 

However, mathematical models can also 
match reality very well when we make 
things specifically to match a 
mathematical model. This is often their 
role in technology. For example, consider 
how often buildings feature straight lines, 
triangles, rectangles, squares, flat planes, 
circles, ellipses, catenary curves, and even 
parabolic curves. We usually strive to 
understand and model what is useful. We 
then usually build what we understand 
and can model.  

Similarly, mechanical systems (with cogs, 
gears, pistons, and so on) also involve 
geometry we can model mathematically 
and use to fix the precise dimensions of 
components. 

Boolean algebra can be useful for 
modelling electrical circuits. It makes it 
possible to restate logic in different ways, 
perhaps simpler, and to translate logic 
into circuitry. 

More recently, electronic and computer 
systems have been designed to have the 
precise, logical behaviour that is easily 
captured in mathematics and controlled by 
languages that, while not quite 
mathematics, often have similar features. 

Today’s software also reflects 
mathematical ideas. Relational databases 
are called ‘relational’ because a relation, in 
mathematics, is a set of tuples, usually 
visualised as a table of data. Query 
languages almost always support ‘Boolean’ 
queries, which are queries built using the 
operators of Boolean algebra. 

Number theory has been given a new 
importance in modelling algorithms that 
encrypt and decrypt data. 

2.3 Deductions from models 

Mathematical models can be used in many 
ways. 

2.3.1 Deducing properties 
Models can be used to deduce properties 
of something that exists or is being 
designed or planned. 

For example, if a bridge is being designed 
then mathematical models and deductions 
can be used to work out such things as: 

 how much concrete is needed 

 how many bolts are needed 

 how long the work will take 

 how much the materials and labour 
will cost 

 the forces acting on various parts of 
the bridge 

 the strain within the materials of the 
bridge 

 what loads the bridge can safely 
support 

 how much wind force the bridge can 
cope with 

 the maintenance costs of the bridge. 

2.3.2 Sense making 
There are some important situations 
where we have data but they are not 
entirely reliable and are difficult to 
interpret. 

For example, tracking an aeroplane using 
radar can be done better if modelling 
techniques combine information from the 
past with current data. Predictions about 
where the aeroplane will be are combined 
with the latest indications of where it 
seems to be now. A famous example of 
this technique is the Kalman Filter. 

Sophisticated mathematics is used for 
three dimensional medical scanning. 
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More generally, statistical techniques fit 
models to data to work out what the 
underlying truth is likely to be. 

2.3.3 Predicting behaviour 
There are surprisingly many different 
types of prediction that can be made. 

Prediction might focus on performance in 
some kind of test e.g. maximum speed, 
fuel economy, time to completion. 

Or it might predict the situation at a 
particular point in time (usually in the 
future but it is also possible to go back in 
time), or the complete trajectory of 
variables over time, or the situation in the 
long run. 

It is sometimes possible to estimate the 
results that can be achieved with a given 
level of resources (e.g. fuel, money, 
people, time). 

Simulation, in particular, can be useful for 
understanding the varieties of behaviour 
that are possible for a system. This might 
identify specific possibilities that are 
dangerous or that are particularly 
valuable. 

For example, models of epidemics have 
revealed the crucial factors that determine 
if an infection will grow rapidly or dwindle 
to nothing.  

2.3.4 Improving designs and plans 
It is often possible to improve a design or 
plan using mathematical modelling. 

Sometimes it is possible to calculate, 
directly, the input values needed to 
achieve the best output, or to achieve a 
particular output that is required. 

More generally, if we can predict the 
performance of different designs then we 
can try alternatives and pick the one with 
the best predicted performance. 
Sometimes it is possible to try many 
variations, perhaps systematically, in a 
hunt for the best design parameters. This 

search can be automated and there are 
several well-known algorithms for doing 
this. 

In simulations, control systems can be 
tested to see if they are able to defend 
against bad behaviour, or able to maintain 
rare but helpful behaviour. The simulation 
can include sudden, externally driven 
events to see how the control system 
responds. For example, this could be done 
for electronic currencies. Such simulations 
can also be used to train people to act as 
controllers. 

2.3.5 Quantifying uncertainty 
Many of the results referred to above 
cannot be determined exactly with 
certainty. Mathematics can be used to 
analyse the level of uncertainty in results. 

For example, the numerical method of 
Monte Carlo simulation can take a model 
and information about uncertainty around 
inputs to that model and work out the 
uncertainty we should have around our 
predictions. Other techniques make it 
possible to identify how much uncertainty 
results from each part of a model, which 
is useful in directing research to improve 
the model. 

2.4 Modelling toolkits 

Mathematics is much more than individual 
models for particular situations. To tackle 
modelling problems as if they were all 
dissimilar tasks would be inefficient. 

As mathematical innovators develop 
mathematics they tend to focus on 
particular types of model or particular 
methods for use with a variety of types of 
model. When they focus on types of 
model they learn to use them in different 
ways and create variations on that model. 
Models are often generalized and 
specialized, creating an array of somewhat 
different models for slightly different 
situations. 
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Typically, the model types developed and 
studied initially are simple but, as more is 
learned, mathematical innovators move on 
to more complicated models. In recent 
decades this has often involved 
developing software tools to apply 
numerical methods or for symbolic 
inferences. The numerical methods in 
particular have often made it possible to 
develop models that are too complicated 
or awkward to be used in any other way. 

Although mathematical innovators and 
educators have rarely thought of 
themselves as developing modelling 
toolkits, they have done so. They have 
provided: 

 Defined objects with often-useful 
properties (e.g. numbers, shapes, 
topological objects, axioms) 

 Often-useful inference rules (e.g. 
identities that allow us to rewrite 
mathematical statements) 

 Often-useful model structures (e.g. 
formulae with letters representing 
parameters of the model) 

 Ready-made deductions (theorems, 
lemmas, solutions, etc.) 

 Methods for making logical deductions 
from models to derive useful formulae 

 Procedures (e.g. numerical methods) 
for making deductions in situations 
where a neat formula is not possible or 
just not available yet. 

These tend to be grouped up in ways that 
point towards particular application areas. 
For example, geometry is good for 
modelling physical objects, arithmetic is 
useful for money, and probabilities are 
useful for decisions under uncertainty. 

This can be viewed as a collection of 
toolkits, often containing more specialised 
toolkits. Each toolkit is potentially 
applicable to a range of modelling tasks. 

As mentioned, in modern mathematical 
practice it is common to develop software 
that automates use of the mathematics. 
Examples include modelling packages and 
languages that contain commands that 
carry out mathematical operations. 

E.g. Animated movies are made on 
computers that contain models that 
are used to simulate movement and 
visual effects, and to calculate the 
appearance of scenes. 

E.g. Models used in engineering and 
architecture represent not only the 
appearance of objects but also the 
forces acting within them. 

E.g. Models used in weather 
forecasting represent the atmosphere 
and simulate how it will change in 
future, automating the mathematics. 

2.5 Logical explanations 

The way that mathematics is usually 
written reflects, to some extent, practices 
that help to build a reliable modelling 
toolkit. 

One style, used for the most elementary 
foundations of mathematics, is to start 
with a set of axioms. These are 
statements assumed to be true, in the 
sense that no proofs are attempted or 
required. The idea is to start from 
statements so self-evidently true that 
nobody will want to argue over them. 

The explanation then uses appropriate 
inference rules to prove more statements 
from just these axioms. Some of these 
new statements are considered important 
enough to highlight. They may be called 
theorems (the highest status), corollaries 
(add-ons to theorems), lemmas 
(subsidiary results established on the way 
to a theorem), or identities (rewriting 
rules). 

These are then used to deduce more 
theorems, corollaries, lemmas, and 
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identities. As this process continues the 
toolkit acquires more inference rules that 
shortcut new proofs and give users 
greater reasoning abilities. 

Another way to start is to begin with an 
elementary model, usually a very general 
one with flexibility built in. The writer can 
then deduce some things from that 
generic model, but does not stop there. 
The next stage is to define more 
specialized versions of the generic 
situation and deduce things about each 
version. 

This is almost explicitly a modelling toolkit 
with a range of similar models, ready-
made inferences, and solution methods 
developed. 

2.6 Idealization 

Mathematical objects and their properties 
are typically idealized, even though they 
are often inspired by real-world 
phenomena that are familiar to everyone 
through daily experience. This is 
characteristic of models. 

2.6.1 Idealized and practical shapes 
The properties of geometrical objects are 
hard or impossible to achieve in practice. 
They are idealized versions of shapes we 
experience in the real world. 

For example, a mathematical line has no 
thickness, unlike a line drawn on a piece 
of paper or a computer screen. A 
mathematical line is perfectly straight, 
whereas a drawn line will be seen under a 
microscope to have surprisingly ragged 
edges (as well as being wide). A 
mathematical line can continue without 
ending (and this is usually assumed by 
default). 

Similarly, circles are perfectly round, 
squares are perfectly square, and so on. 
All this is true regardless of size, so if a 
shape is simply changed in size then it will 
retain its other properties even as it 

shrinks to a tiny speck or expands out 
across the universe. 

Idealized objects can be used to make 
deductions and assess the accuracy of 
practical shapes created by humans or 
found in nature. 

For example, imagine taking a pair of 
compasses and opening them to about 5 
cm. Draw a circle then put the point on 
the circumference somewhere and mark 
off a point further along the circumference 
with the compasses (still open to the 
same size). Then move the point to that 
mark and repeat the move, over and over. 
The sixth mark will be over the point you 
started at, or very nearly. 

The reasons for it being near but not 
perfect will be your small mistakes in 
positioning the point and perhaps also 
your compasses having eased open a little 
more. 

How do we know these are the reasons 
for the slight difference? Using 
geometrical reasoning with an imaginary 
ideal circle and some equilateral triangles 
we can prove that the drawing process, if 
executed perfectly, would have brought 
you back to your starting point exactly. 

2.6.2 Idealized numbers and practical 
numerals 

Similarly, the fundamental number 
systems are defined as idealized systems, 
but with properties familiar to us through 
daily experiences. We can understand this 
by distinguishing clearly between: 

 Number systems, which are idealized; 
and 

 Numeral systems, which are systems 
for permanently labelling (some of) the 
numbers and doing computations, and 
which have practical limitations. 

There are two fundamental types of 
number system: 
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 Integers, which are the counting 
numbers; and 

 Reals, which are the measuring 
numbers. 

Here is an explanation of the properties of 
these two idealized number systems. This 
is followed by an explanation of practical 
numeral systems. 

The Integers are the idealized numbers 
we use to say ‘how many’. Their meaning 
is intuitively obvious to people and 
reflected in the English language in the 
distinction between ‘how many’ and ‘how 
much’. We determine ‘how many’ by 
counting, which matches numbers to the 
items to be counted, one-to-one. 

If you were counting people walking past 
you on a path you might count up for 
people coming from one direction and 
down for people coming from the other 
direction. If you start at zero you could 
end the day with a negative or a positive 
total, or end back at zero. 

(Imagine the idealized numbers as being 
each unique by some invisible means. 
They are not named. Names are applied 
later by a practical numeral system.) 

The Integers allow counting, including 
counting backwards past their starting 
point. They are assumed to have one 
number that is the starting point (usually 
to be labelled 0) and to extend up and 
down without gaps and without end. 

Having ‘no gaps’ means that, however 
many items you need to count, there is an 
Integer that corresponds to that many 
items (negative or positive). Going on 
‘without end’ just means that we never 
worry about running out of Integers, no 
matter how far we go in either direction. 

Other properties sometimes associated 
with Integers are really linked to 
operations using them. The most 
fundamental are comparison (which is 

bigger?) and addition. Others can be 
derived from these. 

Subsets of the Integers include Natural 
numbers, prime numbers, and square 
numbers. 

The Real numbers are used for 
measuring. They answer the question 
‘how much’. They are qualitatively 
different from the numbers used to say 
‘how many’. 

The Real numbers have a starting point 
(usually to be labelled 0) and extend up 
and down without gaps and without end. 
In this context ‘without gaps’ means that 
any extent you wish to measure has a 
corresponding Real number, with no 
exceptions. Again, ‘without end’ means 
that we never worry about running out of 
Real numbers, no matter how far in the 
positive or negative direction we go. 

Other properties sometimes linked to Real 
numbers should really be linked to 
operations using them. The most 
fundamental are comparison (which is 
bigger?) and addition. Others can be 
derived from these. 

Subsets of the Reals include Rational 
numbers, irrational numbers, 
transcendental numbers, and computable 
numbers. 

The two fundamental idealized number 
systems1 (for counting and measuring) are 
logically different but related to the 
practical numeral systems that have been 

 
1 Other mathematical objects using numbers 
include: 
 Bundled numbers e.g. vectors, matrices, 

determinants. 
 Mistaken inventions that can be retired e.g. 

hyperreals, surreals, complex numbers (which 
should be replaced with vectors and suitable 
vector operations, avoiding the square root of 
-1, which does not exist or have any real-world 
meaning, see Leitch (2017a)). 
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developed to label the numbers 
permanently and facilitate computations. 

Numerals2 include labels such as 1, 3, 3.1, 
3 x 1017, 10010110, VIII, and 2A3. On 
computers we label numbers using a 
variety of systems. Different numbers of 
binary bits may be used. Negative 
numbers may or may not be represented 
and there are alternative techniques for 
doing so. Floating point is another 
technique to label numbers that can be 
larger or smaller than otherwise would be 
the case. 

On computers there is almost always a 
limit to how many labels can be created 
by a numeral system. Usually, Integers 
are labelled without gaps but there are 
numbers above and below that are out of 
range and not labelled. With Real 
numbers there are, in effect, frequent 
gaps between labelled Reals as well as 
regions above and below with no labels at 
all. When the floating point technique is 
used the gaps between labelled Reals are 
not of fixed size but tend to grow as the 
numbers themselves grow. 

Numerical software has to check 
frequently for calculations that go out of 
range and may also check for and try to 
reduce rounding errors. 

When we write numerals by hand (usually 
using decimal notation) the limit on 
number size is not specific but still we 
cannot, in practice, work with very large 
numbers or very small numbers. Too 
much paper and concentration are 
required. 

While the designs of the idealized number 
systems are very simple, the designs of 
practical numeral systems are complicated 

 
2 Wikipedia offers an interesting page listing 
numeral systems through history. 
https://en.wikipedia.org/wiki/List_of_numeral_syst
ems 

and have improved greatly over the 
centuries. For example: 

 Roman numerals are awkward to 
compute with compared to the Arabic 
system with place value. 

 Binary numbers have become 
important because they can more 
easily be represented in electronic 
circuits. 

There is still scope for improvement in the 
design and use of numeral systems. 

Idealized number systems can be used to 
deduce conclusions that are exact and 
reliable. One use of these is to assess the 
accuracy of computations using practical 
numeral systems. 

For example, using Real numbers it is 
always true that if 

𝑎 +  𝑏 =  𝑐 

then 

𝑐 –  𝑎 =  𝑏. 

However, computer arithmetic can fail to 
replicate this when 𝑎 is very large and 𝑏 is 
very small. On Excel 2010, if 

𝑎 =  100,000,000 

and 

𝑏 =  0.000,000,1 

then 𝑐 − 𝑎 is returned as zero, not 
0.000,000,1. This is because of rounding. 

(Python 3.7 on my laptop does better. 
Although it does not give 0.000,000,1 as 
the final result, it gets close at 
0.000,000,104,308,128,356,933,6.) 

There are two other ways that numbers 
get labelled, but both are different in 
principle from the permanent labels 
provided by numeral systems. 

When writing mathematics it is common 
to introduce letters to represent numbers 
or other objects that are either variable or 
currently unknown. For example, 𝑥  and 
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𝑥  might be introduced as the names of 
two Real numbers. This is one type of 
label. 

Another type of label is exemplified by 𝜋 
and 𝑒. These are particular Real numbers 
with great significance in mathematics 
that have been dignified with names of 
their own outside the usual framework of 
number labels. In these two cases, that is 
necessary because decimal notation 
cannot represent these values exactly no 
matter how many digits follow the decimal 
point. 

Other, less prestigious, numbers that have 
no exact representation in decimal 
notation are often referred to using a 
formula for calculating their value, e.g.: 

 √2, √3, √5, √6, √13  

 , , , , ,  

 sin[20], cos[125] , tan[12] 

There is also the dotted notation for 
recurring decimal digits. This refers to the 
mathematical limit that would be 
approached if more and more decimal 
digits were added according to the 
repeating pattern. 

2.7 Example: Counting and 
arithmetic 

This is the first of five examples of 
mathematical modelling toolkits. 

The ability to count and use basic 
arithmetic is useful in many ways. It 
allows some useful predictions. 

E.g. If you are preparing party bags for 
a child’s party then you can predict if 
there will be the right number at the 
end of the party if you know how 
many children are coming and count 
the bags. 

E.g. If you have 54 sheep and buy 23 
more then you will expect to have 77 
sheep in total and when you count 

them all you should find your 
prediction is correct. 

E.g. You can identify when an item has 
been lost or stolen by repeatedly 
counting, because your model predicts 
no change. 

E.g. If you have 25 fish to divide 
between 5 people then you can give 5 
to each person as they come forward. 
This predicts, correctly, the number 
you would eventually give each person 
if you went round in a circle giving fish 
one at a time until they were all 
handed out. 

E.g. To equip 200 archers with bows 
and a stock of 10 arrows each will 
require 200 bows and 2,000 arrows. If 
you know more you can predict how 
long it will take to do this and how 
much it will cost. 

The modelling is very simple but 
extremely accurate in the situations where 
we usually do it. We often feel as if we 
are dealing directly with reality, not a 
model. 

2.8 Example: Differential 
equations 

Models based on differential equations are 
collections of one or more equations 
where at least one of the terms of the 
equation is a derivative (i.e. a rate of 
change of one variable with respect to 
another). These equations imply the 
values of their variables at particular 
points, usually in time, but do not allow 
them to be calculated directly. 

‘Solving’ a system of differential equations 
usually means finding formulae that can 
be used to calculate directly what values 
variables will have at any particular time. 

Although many of these models were 
developed to represent specific 
phenomena (e.g. movement of an object 
subject to forces, flow of heat) they are 
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also classified by their mathematical 
properties. 

For example, the model: 

𝑑𝑦

𝑑𝑥
= 3𝑦 + 𝑥  

is classified as an ordinary differential 
equation, first order, linear, and 
heterogeneous. It is an example of a 
general type that looks like this: 

𝑑𝑦

𝑑𝑥
+ 𝑓[𝑥]𝑦 = 𝑔[𝑥] 

The next model is not of that type. The 
model: 

𝑑𝑦

𝑑𝑥
= 𝑦𝑥  

is an ordinary differential equation, first 
order, non-linear, but separable. 
‘Separable’ means it is also an example of 
the more specialized form: 

𝑑𝑦

𝑑𝑥
= 𝑓[𝑥]𝑔[𝑦] 

and a particular solution method is 
applicable, which is to solve: 

1

𝑔[𝑦]
𝑑𝑦 = 𝑓[𝑥] 𝑑𝑥. 

The mathematical properties of the 
models help to identify which equations 
and systems of equations can be solved, 
and how. Sometimes an equation or 
system of equations cannot be solved but 
properties of its solution can be deduced. 

It is typical of mathematical models that, 
as they get more realistic, they also get 
more complicated and, quite soon, it is 
impossible to solve them symbolically. In 
other words, there is no simple formula 
that will deliver the predictions and other 
answers desired. 

So, instead, we now use computers to 
apply numerical methods that provide the 
required answers, approximately but very 
accurately. 

One of the first and simplest such 
methods is Euler’s method. It is a form of 
simulation. The algorithm starts with the 
variables of the system having their 
known starting values. It then moves 
ahead in small steps of time, calculating 
the various derivatives approximately and 
applying them to work out the values of 
the variables at the next time step. 

Although errors tend to accumulate, they 
can be kept smaller by using very small 
time steps. There are also more 
sophisticated alternatives to Euler’s 
method that use techniques to reduce 
those errors. 

Such methods are very flexible and able to 
simulate the behaviour of very 
complicated systems of differential 
equations. Mathematical analysis has been 
used to understand how the errors grow 
as the simulation goes further into the 
future. 

Development of the mathematical 
modelling toolkit(s) built around 
differential equations began over 300 
years ago. At that stage the toolkit 
contained the ideas of continuous 
variables, derivatives, and a tiny number 
of differential equation forms for which 
solutions were known. 

Over subsequent years and centuries 
more and more types of differential 
equation and system were studied and 
solutions to some types were worked out3. 
The toolkit expanded and one could also 
see parts of it as sub-toolkits. 

The modern situation is that there are 
toolkits for specific types of equation but 
beyond that is a more general purpose 
toolkit that features: 

 
3 A sense of how far this has progressed can be 
gained by scrolling to the bottom of the Wolfram 
MathWorld page on ordinary differential equations: 
https://mathworld.wolfram.com/OrdinaryDifferenti
alEquation.html 
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 Variables 

 Differentials 

 Function types 

 The ability to put these together as 
systems of differential equations of 
almost any form 

 Software to simulate systems 
numerically using the model, even 
when it is complicated and there is no 
known symbolic solution. 

The toolkits also extend to equations that 
feature other elements beyond 
derivatives. 

Courses and textbooks teaching 
differential equations typically do not 
reflect this idea of toolkits and instead 
move through the various types of 
equation in only a partly systematic 
manner. 

2.9 Example: The Kelly Criterion 

The Kelly Criterion is an objective for 
repeated bets. The idea is to find the 
fraction of your current wealth to bet on 
each occasion that leads to the highest 
expected value of the logarithm of your 
final wealth. This is the Kelly fraction. 
Risking only a fraction of your wealth each 
time ensures that you do not run out of 
money completely, which would prevent 
further betting. 

Kelly (1956) was trying to derive 
information theory by a different method. 
Along the way he introduced the Kelly 
Criterion, which has been more influential 
than his alternative derivation of the 
formulae for information. 

Over time, the variety of situations in 
which this criterion can be applied has 
increased. In other words, the toolkit has 
expanded and now covers more 
situations. 

Kelly’s first paper covered three situations 
involving discrete bets with sensible odds. 

Later work covered two-outcome bets 
with any odds and investments in 
securities whose values fluctuated 
lognormally – but only for a portfolio of 
one type of stock and only if we can 
continuously and without cost adjust our 
holding. 

Other work considered the situation where 
we do not know the long run relative 
frequencies of the outcomes in the 
repeated bets, but can perhaps learn 
them over time. Others looked at discrete 
bets with more than two possible 
outcomes, and at share portfolios with 
multiple stocks. 

Some approaches to multiple discrete 
outcomes require numerical methods to 
solve the resulting equations. Another 
approach is to simulate hundreds of 
thousands of bets using different fractions 
of wealth and select the best performing. 
This is often quite practical and quick, and 
makes it possible to consider awkward 
real-world issues like transaction costs. 

The Kelly criterion is a much more recent 
development than differential equations 
and has been studied far less. Work on 
particular situations has emerged in 
individual papers and there is a need for a 
systematic taxonomy of applications and 
techniques. Software to support this 
would also be helpful. 

2.10 Example: Z 

In the 1980s there was a surge of interest 
in using mathematical models as 
specifications of computer systems. It was 
thought that mathematics offered a way 
to write more precisely and less 
ambiguously about systems and that this 
would be advantageous, which it is if you 
have the intellect and skill to do it. 

One prominent example was the Z style of 
specification. Like similar approaches this 
used discrete mathematics, especially set 
theory, to build specifications of the state 
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of a system and operations that changed 
this state. 

The approach offers clever solutions to 
problems that only arise when 
mathematical models get big. These 
clearly draw on computer programming 
practices. In particular: 

 Object names are words and 
abbreviated words chosen for being 
memorable, rather than single letters. 

 The mathematical type of every object 
is specified in advance of its use. 

 Sections of specifications are bundled 
into ‘schemas’, which have a distinctive 
style of three-sided box. 

 The sections of specifications can be 
named so that the names can be used 
later to reference (in effect, to include) 
those blocks of mathematics in later 
schemas. 

 Mathematical text is interleaved with 
plain English statements of the same 
points. The English is more accessible 
but the mathematical text removes 
doubts over interpretation. 

The skills needed from users of this 
approach include wise decisions on how to 
decompose complicated models into 
smaller objects, with memorable names 
and memorable behaviour, that will be 
needed often during modelling. 

A useful book documenting Z is the 
reference manual by Spivey (1988). 
Chapter 4 is about what he calls its 
‘mathematical toolkit’, but this term could 
have been used for much more of the 
content. 

2.11 Example: CSP 

Communicating Sequential Processes 
(CSP) is a notation for specifying 
(modelling) the behaviour of systems that 
operate in parallel (Hoare, 1978, 1985). 
The idea is that such systems can be seen 

as separate processes that operate in 
parallel with others and communicate with 
them by sending signals along channels. 

CSP is a mathematical notation that allows 
compact specifications of such systems. 

In some ways it is similar to Z but CSP 
shows how mathematical techniques can 
be applied to yet another area where 
precise modelling and logical reasoning 
are useful. 

3. Philosophical aspects 
The perspective described above answers 
some of the best known philosophical 
questions about mathematics. 

3.1 Invented or discovered? 

In this perspective, mathematics is 
invented but, usually, to mimic properties 
discovered in the real world. Mathematical 
inventions are brought into being by 
writing definitions and building on them 
by deduction4. 

Because of the desire to mimic reality, this 
modelling is not unconstrained invention, 
although there are design alternatives and 
clever choices can make a big practical 
difference. 

Key discoveries have already been made. 
These concern the permanence of reality 
and the way it maintains counts and 
measurements over time. The 
correspondence between model and 
reality in the case of counting and 
measuring things is so good that it is 
often hard to see that our calculations are 
using models at all. 

There is also invention in the choice of 
notation, the details of definitions, and the 
selection of statements to prioritize as 

 
4 At least, this is how it is presented. In practice, 
surely there have been instances where the 
definitions were crafted to result in the deductions 
desired. 
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theorems. There are some choices 
between alternative conventions that 
could be made differently, though 
convenience usually argues for one 
convention in particular. For example, 
probabilities add up to 1 because of a 
convention, well chosen, hundreds of 
years ago. 

Some statistical techniques are also just 
one approach of many that could have 
been chosen. For example, standard 
deviation is not the only possible measure 
of spread. 

Measures of performance are also 
invented. For example, many alternative 
rules for scoring probabilistic forecasts 
have been proposed. 

Methods for reasoning from models often 
involve substantial efforts of invention. 

Almost certainly some mathematical 
models have been created without an 
effort to mimic reality. When this is done 
there is a higher risk that the model will 
be useless. There is also a higher risk that 
some people will form wrong beliefs about 
the world, reassured by the apparently 
logical derivation of the model’s 
predictions. 

The extent to which models have been 
created without a deliberate attempt to 
capture real world phenomena is 
sometimes obscured by the way 
mathematics is often presented. A model 
that was originally developed for a real 
world situation gets generalized and linked 
to other theories, then stripped of 
references to its original context, then 
taught to undergraduates as if the theory 
came first. 

3.2 Construction of numbers 

In the perspective described above, the 
counting numbers (Integers) and the 
measuring numbers (Reals) are based on 
intuitive notions of quantity so familiar 

and universal that justification is not 
needed. These notions agree with our 
experience with the real world and 
everyone knows it. A foundation for these 
concepts that is less familiar to everyone 
would be a weaker, less useful foundation. 

The counting numbers are qualitatively 
different from the measuring numbers and 
so the counting numbers are not a subset 
of the measuring numbers. It only seems 
that way because we have re-used 
numeral systems developed to label 
counting numbers to label points on the 
Real number line. If a completely different 
form of labelling had been used for the 
Reals we would not notice any apparent 
similarity. 

And yet, despite the simplicity and 
intuitive appeal of the counting and 
measuring numbers, some late 19th and 
early 20th century mathematicians thought 
it would be helpful to, somehow, deduce 
numbers from something logical and (they 
thought) even more fundamental. 

One famous attempt to define Natural 
numbers involves a recursive definition: 

0 = {} = ∅ 

1 = {0} = {∅} 

2 = {0,1} = {∅, {∅}} 

3 = {0,1,2} = {∅, {∅}, {∅, {∅}}} 

and so on. 

This defines numbers using just empty 
sets, which is so bizarre it could be some 
kind of joke. Where do these ideas come 
from? What is the point? The lack of any 
straightforward connection to our 
universal experience of the world is a 
fundamental flaw in this approach. 

Various attempts have been made to 
‘construct’ Real numbers, often from 
Natural numbers or Integers. They tend to 
be complicated and to include elements of 
operations with the numbers as well as 
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attaching the labels 0 and 1. Some ideas 
are baffling and bizarre. 

In the perspective described earlier, the 
Reals are just as fundamental as the 
Integers, being equally strongly based in 
our intuitive thinking. There is nothing to 
be gained from trying to build one from 
the other. 

3.3 Infinity 

In the perspective explained earlier, there 
is no infinity, either as a number or 
anything else. The idealized number 
systems simply continue without end and 
we never check for going out of range or 
for rounding errors. 

The numbers can be as big as we like or, 
in the case of Reals, as small as we like. 

For practical suggestions on eliminating 
references to infinity from mathematical 
writing, see Leitch (2016). 

4. Practical aspects 
The idea of mathematics as modelling 
toolkits suggests several exciting areas for 
improvement in practices5. 

This would involve a conscious attempt by 
anyone involved to create or contribute to 
modelling toolkits that others can 
understand, learn to use, and apply 
efficiently (usually with computer 
support). This means going beyond just 
writing proofs, defining objects, and 
developing methods. It means making 
them available to others in a form that 
promotes their more rapid take up and 
efficient use. It means thinking of users 
and useful applications from the very 
start. 

This might have a number of effects. 

 
5 For a broader look at ways that mathematics 
could make a better contribution to society, see 
Leitch (2017b). 

4.1 Toolkit quality 

More attention could be paid to the design 
and presentation of toolkits. This would 
cover improved understanding of the 
desirable attributes of toolkits and how to 
achieve them. 

The most fundamental design choices are 
ontological i.e. they concern what types of 
thing are considered to exist in the model. 
In Z specifications these include the 
fundamental sets/types used in the model. 

These things should be clearly linked to 
the common experiences of users. If this 
is not done it is hard to apply the models 
reliably. 

Names used in a toolkit (e.g. for objects, 
operators, theorems, solution methods) 
should be memorable and not misleading. 
For historical reasons, mathematics has 
many examples of names that are 
misleading today. An example is the term 
‘random variable’, which refers to objects 
that are neither random nor variables. 

Notation should be compact yet also 
unambiguous, consistent, understandable, 
memorable, and scalable to large models. 
These requirements often conflict. It is 
usually necessary to accept less compact 
notation when models get larger. It is 
occasionally necessary to accept slightly 
less compact notation to get rid of logical 
inconsistencies. 

There will also be opportunities to make 
wise choices about what model types to 
focus on, how to craft definitions, which 
operators to define and use, and which 
deductions to highlight (as theorems, 
identities, etc.). This is a point that is 
easier to understand if you have written 
large models or computer programs. 
Often, the early stages involve some 
decisions that get revised, perhaps more 
than once, as you search for a structure 
that will make the work easier. 
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These choices should help to give models 
that are compact and understandable, and 
help users become adept at efficient 
reasoning and problem solving. 

An example of a poor initial choice is the 
invention of quaternions. When Hamilton 
thought of them in 1843 he thought he 
had made a breakthrough in modelling 
mechanical systems in three dimensions. 
However, his methods were rapidly 
displaced in the 1880s by simpler, clearer, 
more logical vector methods. 

There are large opportunities to improve 
the way model toolkits are structured 
when presented and taught. It will help to 
have structured breakdowns of model 
types and the situations where they can 
be applied. (This is discussed in more 
detail in the next sub-section.) 

It would also be useful if all the elements 
needed to use each tool were identified 
and presented in a standardised way for 
each tool. Leitch (2019) presents ideas on 
specifying regression methods that show 
the elements needed in this case and 
suggests how standardised presentation 
might look. 

4.2 Organization and 
presentation 

Many areas of mathematics would benefit 
if someone wrote organizers for the model 
types and other elements of toolkits. Such 
organizers might reflect the various uses 
of the models, the model structures, and 
the methods for their use. 

Typical organizers might include: 

 Breakdowns of model types (in the 
form of structured lists or trees), 
starting from the most general and 
working down to more specialized 
versions. (Tables might be useful as 
another way to structure the 
breakdown.) 

 Lists or tables of alternative ways to 
represent models. 

 Breakdowns of model application 
situations. 

 Tables or trees mapping modelling 
situations to suitable models. 

 Breakdowns of tasks using models 
(e.g. make prediction, work out 
optimal parameter values). 

 Breakdowns of methods for doing 
tasks. 

 Tables mapping models and tasks to 
methods for doing those tasks with 
those models. 

Two small examples showing organizers 
for school-level topics in mathematics are 
provided in Appendix A and Appendix B. 

Such organizers could be used in various 
ways: 

 Placed on a website and used as an 
index into relevant books, research 
papers, and other websites. Anyone 
trying to use the modelling toolkit who 
needs more information about 
something can use the organizers to 
find it. 

 Mathematical innovators might be 
encouraged to do work in areas 
identified by organizers where there 
are gaps. Well-designed organizers 
might help to generalize problems and 
identify variations in modelling that still 
need attention. 

 Educators could use them to structure 
courses and textbooks. Learners would 
feel they are being taken, 
systematically, through a collection of 
useful modelling tools. 

Mathematical innovators writing about 
their innovations might be motivated to 
give more practical tips on using their 
developments. 
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4.3 Automation 

Although there are already many amazing 
computer tools for mathematics, further 
opportunities to develop computer tools to 
support model toolkits may become more 
obvious. 

The computer tools could include 
libraries/packages and applications. 

4.4 Choice of development area 

Some people looking to contribute to the 
development of mathematics might 
choose to go back to existing 
developments and repackage them as 
well-organized modelling toolkits, with 
organizers, tips for use, software support, 
and clearer explanations6. 

In other cases, the idea of promoting 
toolkits might inspire choices that focus on 
important application areas where there is 
a good prospect for progress. 

4.5 Education 

4.5.1 Teaching toolkit development 
Teachers of mathematics at school and 
university might look to go beyond solving 
individual problems within a brief 
academic examination or assignment. 

Professional use of mathematics often 
involves tackling a series of similar but 
different problems, looking to improve 
over time. This requires: 

 use of existing modelling toolkits; and 

 development of specialised modelling 
toolkits for particular types of problem. 

The skills of developing, extending, 
refining, packaging, and automating 
toolkits are important to this but are rarely 
if ever taught explicitly at school or at 
university. 

That should change. 

 
6 See Leitch (2009) for ideas on writing 
mathematics more clearly. 

4.5.2 Inspiring problems 
Students, especially at school level, often 
question if the mathematical techniques 
they are learning will ever be useful to 
them outside academic examinations. 
They are right to raise this issue because 
a large proportion of questions children 
are asked, especially at secondary school 
level, are contrived puzzles of no direct 
use to anyone. This surely reduces 
motivation for at least some students, 
especially those who want to do 
something useful with their lives. 

Instead, students could be taught, 
explicitly, that they are learning to use 
(and develop) tools from mathematical 
modelling toolkits and students could be 
tested using questions that only test 
useful skills. 

Ideal questions have a real-world setting, 
a task that a person might really want to 
complete, and a story that puts the 
student into that situation as a modeller 
using models to calculate useful results. 

It is not necessary that all questions have 
a realistic setting, task, and story. Many 
questions simply require methods for 
reasoning with models. However, the 
inclusion of many questions with fully 
realistic elements should help to focus 
learning and testing as well as motivate 
students. 

Here are some groups of similar questions 
to illustrate these ideas. The first two 
examples illustrate the familiar difference 
between realistic and unrealistic settings. 

Unrealistic: A linear sequence starts: 

𝑎 + 𝑏, 𝑎 + 3𝑏, 𝑎 + 5𝑏, … 

Its second term has the value 11. Its 
fifth term has the value 23. Work out 𝑎 
and 𝑏. 

Realistic: Records of faults in a 
factory show them to have risen 
linearly for 5 days. The number of 
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faults on day one was 7 and on day 5 
it was 23. You want to create a model 
that will predict the number of faults in 
future days if this trend is not 
corrected and linear increases 
continue. Work out this model and 
predict the faults for the 6th and 20th 
days. 

To succeed with the realistic problem 
above the student has to recognize that 
there is the opportunity to apply an 
arithmetic sequence model and then apply 
it. Predictions are asked for that might be 
wanted in a real situation. The desire for 
these predictions is described as coming 
from the learner. 

Here is another group of example 
questions, this time adding a variant of 
the question that develops the skill of 
toolkit making. 

Unrealistic: A sphere has radius 2𝑥 
cm and a cone has radius 3𝑥 cm. If the 
sphere and cone have the same 
volume, what is the ratio of the cone’s 
radius to its perpendicular height? 

Realistic: A lump of clay rolled into a 
perfect sphere has a radius of 20 cm. 
If it is made into a perfect cone with 
radius 30 cm, what will be the 
perpendicular height of the cone? 

Toolkit making: A large number of 
lumps of clay of different sizes are to 
be made into cones in a workshop. 
Each lump is to be rolled into a sphere 
and measured before being reshaped 
into a cone with perpendicular height 
twice its radius. You want to work out 
formulae that give the radius and 
height of each cone from the diameter 
of the ball that makes it. Choose 
suitable notation. 

And here are questions for much younger 
students. 

Unrealistic: What is 12 – 3? 

Realistic: If dad has baked 12 muffins 
and says he has eaten only 3 of them, 
how many should be left? 

In this last example the realistic problem 
has the elements of modelling, prediction, 
and motivation in a very simple, natural 
form. 

Other questions might use pre-existing, 
scientifically derived models to calculate 
interesting and useful numbers such as 
calorie and nutrient requirements for 
different people, health risks, and the 
average time needed to learn useful skills. 

4.5.3 Teaching about numerical issues 
It would also be worth considering giving 
more prominence to the design of 
practical numeral systems and 
computation processes from an earlier 
age. Rounding errors first become 
important in school mathematics when 
children learn about different ways to 
round numbers and realise that some 
numbers cannot be represented exactly 
using decimal notation. 

There is a particular type of two-stage 
question at GCSE level (a UK exam usually 
taken at age 16) where a student who 
rounds excessively at the first stage may 
take that error into the second stage, 
resulting in an error that is too large at 
the final stage. This is a major teaching 
point but currently given little attention. 

Much more could be taught about 
accumulation of rounding errors in larger 
calculations. There are also some simple 
skills to learn that use the best precision 
an electronic calculator can provide. 

Realistic modelling tends to require 
complicated models, which usually can 
only be solved by numerical methods, 
wherein rounding errors and going out of 
range are important problems. That is 
why these issues are important for 
practical use of mathematics. 
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Topics to consider for school and 
undergraduate level teaching include: 

 Design criteria for numeral systems. 

 The properties of commonly used 
numeral systems, including the range 
and accuracy limitations of common 
computer representations of numbers. 

 Distribution of labels across the Reals 
and alternative designs (floating point, 
tapered floating point, logarithmic). 

 Management of rounding errors in 
calculations. For example, is there a 
best order for adding up a large 
number of numbers? How do errors 
propagate through calculations? What 
algorithms can reduce these errors? 

 Iterative solution and ways to know 
when you are close enough to the 
exact answer. 

5. Conclusions 
Mathematics is, already, a collection of 
modelling toolkits, but with some 
innovation and effort we can embrace that 
idea and do it better. 

There are opportunities to develop, 
present, teach, and use mathematics in 
better ways by applying this perspective. 
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7. Appendix A 
The following example of organizers for a 
very small toolkit is based on the topic of 
sequences at GCSE level in the UK. 

First, the various models can be 
represented with an nth term formula, or 
using a term-to-term formula (and one or 
two initial values). The coverage at this 
level is patchy. 

Models: 

Type Nth term Term-to-
term 

Arithmetic / 
linear 

𝑎𝑛 + 𝑏 𝑈 = 𝑈 + 𝑑 

Quadratic / 
triangular 

𝑎𝑛 + 𝑏𝑛 + 𝑐 - 

Cubic 𝑛  - 

Geometric - 𝑈 = 𝑈 × 𝑟 

Fibonacci - 𝑈 = 𝑈 + 𝑈  

 

Students are taught to do various tasks 
with these models. 

Tasks: 

 Inferring models 

 Terms  nth term defn. 

 Terms  term-to-term defn. 

 Infer a sequence from constraints 

 Infer parameters to arrive at an nth 
term with a particular value 

 Calculating terms 

 nth term defn.  terms 

 Term-to-term defn.  terms 

 Converting between model forms 

 nth term defn.  term-to-term defn. 

 Term-to-term defn.  nth term 
defn. 

 Miscellaneous 

 Is a number a term? 

 

Applications of sequences are not 
explored very far but a couple are 
mentioned. 

Applications: 

 Geometric 

 Compound interest 

 Repeated % losses 
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8. Appendix B 
The following examples of organizers for a small toolkit are based on the topic of 
differential equations in the Further Mathematics A level offered by Edexcel in the UK. 

 

Model types mapped to solution methods: 

Single equations 

Linear 

General 

𝑎 [𝑥]𝑦( ) + 𝑎 [𝑥]𝑦( ) + ⋯ + 𝑎 [𝑥]𝑦 + 𝑎 [𝑥]𝑦 = 𝑄[𝑥]  

First order 

General 

𝑎 [𝑥]𝑦 + 𝑎 [𝑥]𝑦 = 𝑄[𝑥]  

No 𝑦 term 

Homogeneous 

= 0, trivial, 𝑦 is a constant 

Non-homogeneous 

= 𝑓[𝑥], solve by integrating 𝑓 

Includes a 𝑦 term 

Homogeneous 

+ 𝑓[𝑥]𝑦 = 0, solve with separation method 

Non-homogeneous 

+ 𝑓[𝑥]𝑦 = 𝑔[𝑥], solve with integrating factor method  

Second order 

General 

𝑎 [𝑥]𝑦 + 𝑎 [𝑥]𝑦 + 𝑎 [𝑥]𝑦 = 𝑄[𝑥]  

Only y’’ term 

Homogeneous 

= 0, trivial, solve by finding line 

Non-homogeneous 

= 𝑓[𝑥], solve by integrating 𝑓 twice 

All terms or 𝑦’ only is missing or 𝑦 only is missing 
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Homogeneous 

General form 

Not covered – no general solutions 

Constant coefficients (no functions of x) 

𝑎 + 𝑏 + 𝑐𝑦 = 0, solve with discriminant 

Non-homogeneous 

General form 

Not covered – no general solutions 

Constant coefficients (no functions of x) 

𝑎 + 𝑏 + 𝑐𝑦 = 𝑓[𝑥], solve with 𝑦 = 𝐶𝐹 + 𝑃𝐼 

Non-linear 

First order 

No y term 

= 𝑓[𝑥] × 𝑓[𝑦], solve by separation method 

= 𝑓[𝑥] + 𝑓[𝑦], no general solution (yet) 

Simultaneous coupled pair of differential equations 

First order equations 

Homogeneous 

= 𝑎𝑥 + 𝑏𝑦  

= 𝑐𝑥 + 𝑑𝑦 , solve by eliminating to form 2nd order 

Non-homogeneous 

= 𝑎𝑥 + 𝑏𝑦 + 𝑓[𝑡]  

= 𝑐𝑥 + 𝑑𝑦 + 𝑔[𝑡] , solve by eliminating to form 2nd order 

 

Tasks using models: 

Find solutions 

Find form of solution 

Find particular solution 

Verify given solutions 

Verify form of solution 

Verify particular solution 
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Modelling situations: 

Fluids 

Filling and emptying containers with chemical mixing 

Transfer of pollutants/nutrients from one body to another (coupled differential 
equations) 

Living things 

Growth of bacteria 

Predation of one species by another (coupled differential equations) 

Moving particles 

In lines/curves 

Velocity a function of time 

Acceleration a function of time 

Velocity a function of displacement 

Acceleration a function of time and velocity 

Harmonic motion (particles on springs, swinging, rotating) 

Simple harmonic motion (no resistance or forcing) 

= −𝜔 𝑥 , 𝑥 = 𝑅 sin[𝜔𝑡 + 𝛼], �̈� = 𝑣  

Damped harmonic motion (with resistance proportional to speed) 

+ 𝑘 + 𝜔 𝑥 = 0, (2nd order, homogeneous) 

Heavy damping (𝑘 > 4𝜔 ) 

Critical damping (𝑘 = 4𝜔 ) 

Light damping (𝑘 < 4𝜔 ) 

Forced harmonic motion (with resistance and pushing a function of time) 

+ 𝑘 + 𝜔 𝑥 = 𝑓[𝑡], (2nd order non-homogeneous) 

 


