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Taming probability notation 
This article offers some simple suggestions for anyone who wants a clearer, better way to 
write about probabilities, for their own purposes, or perhaps for teaching. Mathematical 
notation tends to change very slowly so I do not expect a revolution in notation soon, 
though widespread change would be beneficial for everyone. So, this article is written for 
those who want to gain a personal advantage from adjusting their own writing habits. This 
may lead to the ability to tackle particularly tricky problems more easily and to original 
new discoveries and inventions. 

Improving the three types of probability notation 

It's not obvious, but there are three basic types of notations for ‘probabilities’ in 
probability theory: 

1. Generic notation using 𝑃, 𝑝, or 𝑃𝑟 for everything. 
2. Specific functions, using a variety of names invented to represent particular 

distributions, such as 𝑓 . 
3. Distribution families (e.g. 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥 |𝜇, 𝜎 ), where specific distributions are selected 

by specifying particular parameter values (e.g. 𝜇 = 2.3 and 𝜎  = 9.4). 

The approach I suggest below is to use the generic notation more strictly, which tends to 
make it a bit more lengthy, but to use specific functions more often and more 
systematically to compensate for this extra writing. 

More complete generic notation 

The format suggested below is inspired by Z (see Spivey, for example), a mathematical 
style developed for specifying computer systems. It also has similarities with proposals for 
notation by Carroll Morgan and by Maarten Fokkinga. 

The format looks like this: 𝑃[𝑋, 𝐴, 𝐵], where 𝑃 is the symbol used every time to show that 
this is a probability, 𝑋 is the name of the probability space involved, while 𝐴 and 𝐵 are 
sets used in the probability space. By ‘probability space’ I mean what is usually meant in 
elementary explanations of probability theory, where it might be written as 𝑋 = (Ω, 𝑆, 𝜇) 
where Ω is a set of possible truths (or outcomes if you are a Frequentist), 𝑆 is a set of sets 
of possible truths that represent all the sets to which we might want to assign a 
probability, and 𝜇 is a probability measure that assigns probabilities to each of the sets in 
𝑆. With these elements in place then the new notation can be defined like this: 
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𝑃[𝑋, 𝐴, 𝐵] =  
𝜇[𝐴⋂𝐵]

𝜇[𝐴]
. 

In other words, this is the probability, using the probability measure 𝜇, that the truth lies 
in 𝐵 given that the truth lies in 𝐴. 

If the probability is not considered as conditional on anything, it is still in fact conditional 
on something in Ω being true, so we can write: 

𝑃[𝑋, Ω, 𝐵]. 

Here are some familiar probabilities in old notation and the more informative notation I 
am suggesting: 

Old notation Suggested new notation 

𝑃(𝐴) 𝑃[𝑋, Ω, A] 

𝑃(ℎ𝑒𝑎𝑑𝑠) 𝑃[𝑋, Ω, {heads}] 

𝑃(𝑡 ≤ 𝑇) 𝑃[𝑋, Ω, {t ∶ Ω | t ≤ T}] 

𝑃(𝐴|𝐵) 𝑃[𝑋, B, A] 

𝑃(𝑍 = 3), where 𝑍 is a 'random variable' 𝑃[𝑋, Ω, {ω ∶ Ω | Z[𝜔] = 3}] 

 

A key advantage of the stricter notation is that you can avoid making mistakes when two 
or more probability spaces are involved in a problem. This might be because you are 
working with the views of two or more people, each one having a different view of the 
probabilities, represented by a different probability space. For example, when analysing a 
negotiation, the two parties might have different views of the outcome from a particular 
settlement and it would be helpful to be able to distinguish between them. Perhaps both 
parties analyse the future in the same way but just have different views as to how likely 
different outcomes are: 

𝑋 = (Ω, 𝑆, 𝜇 ) and 𝑋 = (Ω, 𝑆, 𝜇 ). 

Or perhaps they analyse the future differently so that not even the set of possible truths 
agree: 

𝑋 = (Ω , 𝑆 , 𝜇 ) and 𝑋 = (Ω , 𝑆 , 𝜇 ). 

We also want to be explicit about probability spaces when we build one from another. 

I like the way this notation continually reminds us that there is a probability space 
involved and that all probabilities are conditional. 

Another change in the notation is that space-saving abuses of notation have been 
completely removed. If you spend some time working with Z specifications and writing 
computer programs, checking for type errors becomes second nature. With this 
experience it is obvious that the usual old probability notation is riddled with type errors.  

In the new notation, I prefer the rigour of the set builder notation used to specify the sets 
involved. The stricter notation is consistent and gives more information. The old notation 
for random variables (e.g. 𝑃(𝑍 = 3)) is a particularly misleading abuse of notation. 
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Systematic and frequent use of specific functions 

Both the old and the complete versions of generic probability notation are extremely 
flexible and powerful. However, they both have two limitations. One is that they can be 
long when written down. The other is that they only represent individual probabilities, not 
whole distributions. In practical applications of probabilities we nearly always want to work 
with whole distributions, most of the time. 

It is helpful to avoid using generic notation all the time by introducing specific functions 
with individual names, rather than trying to make 𝑃 do all the work. 

Defining these specific functions produces more compact notation but requires some care 
in thinking of function names that are easy to remember and then providing clear 
definitions each time. When working on a particular problem it is usually easy to learn the 
type and meaning of the functions you create. 

The following examples again assume a probability space, 𝑋, defined as 𝑋 = (Ω, 𝑆, 𝜇). Also, 
notice that I am using square brackets for functions to avoid confusion with the curved 
brackets used to show order of calculation. 

# 
Old 

notation Generic notation 

Typical 
specific 
notation Definition 

1 𝑃(𝐴) 𝑃[𝑋, Ω, A] 𝑓[𝐴] 𝑓 ∶  ℙΩ → ℝ 

∀𝐴 ∶  ℙΩ ∙ 𝑓[𝐴] = 𝑃[𝑋, Ω, 𝐴] 

2 𝑃(𝐵|𝐴) 𝑃[𝑋, 𝐴, B] 𝑔[𝐴][𝐵] 𝑔 ∶  ℙΩ → (ℙΩ → ℝ) 

∀𝐴, 𝐵 ∶  ℙΩ ∙ 𝑔[𝐴][𝐵] = 𝑃[𝑋, 𝐴, 𝐵] 

3 𝑃(𝑍 ≤ 𝐹) 𝑃[𝑋, Ω, {ω ∶ Ω | Z[𝜔] ≤ F}] 𝑍 [𝐹] 𝑍 ∶  ℝ → ℝ 

∀𝐹 ∶  ℝ ∙ 𝑍 [𝐹] = 𝑃[𝑋, Ω,

{ω ∶ Ω | Z[𝜔] ≤ F}] 

4 𝑃(𝑥|𝑦) 𝑃[𝑋, {𝑦}, {𝑥}] 𝑓[𝑦][𝑥] 𝑓 ∶  ℝ → ( ℝ → ℝ) 

∀𝑥, 𝑦 ∶  ℝ ∙ 𝑓[𝑦][𝑥] = 𝑃[𝑋, {𝑦}, {𝑥}] 

 

In example 1, the specific notation does little more than eliminate the need to explicitly 
specify the probability space and conditioning set. The function, 𝑓, takes as input a set 
from Ω (the ‘outcome space’ from the probability space 𝑋) and returns the probability that 
the truth lies in that set, according to the 𝜇 from the probability space. 

In example 2, the idea of a conditional probability distribution is captured as a function, 𝑔, 
that takes as input a set from Ω and returns another function, this one taking as input a 
second subset of Ω and returning the probability that the truth lies in that second set, 
given that it is known to lie in the first. The function, 𝑔, is used by giving the inputs one 
after the other, as shown above. 

Example 3 shows a typical situation involving a so-called ‘random variable’. The old 
notation is read as saying ‘the probability of the random variable, 𝑍, being less than 𝐹.’ 
However, technically, 𝑍 is a function that takes as input an item from Ω and returns a Real 
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number. The generic notation shows this idea using the standard rules of set builder 
notation. The function 𝑍  simply returns the probability of the random variable returning a 
number less than the input. 

Example 4 is another conditional probability distribution, this time probably based on a 
joint probability density distribution, with the notation representing the probability density 
of a particular value of 𝑥 given a particular value of 𝑦. 

You can see from these examples that the new ‘generic notation’ is longer than the 
familiar old notation, but they are both longer than typical specific notation. The 
definitions are longer but they are supplying a great deal of information and explanation 
that is not given in any of the notations. 

Standard notation for distribution families 

The notation for distribution families is really that of conditional distributions so instead of 
writing 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥 |𝜇, 𝜎 ) we can write 𝑁𝑜𝑟𝑚𝑎𝑙[𝜇, 𝜎 ][𝑥]. In this example, 𝑁𝑜𝑟𝑚𝑎𝑙 is a 
function that, given values for its parameters, returns a probability density function. That 
probability density function gives a probability density for each input value, 𝑥. 

An advantage of this style is that it is possible to talk about the function 𝑁𝑜𝑟𝑚𝑎𝑙[𝜇, 𝜎 ] 
without referring to a particular value produced by it, which would be written as 
𝑁𝑜𝑟𝑚𝑎𝑙[𝜇, 𝜎 ][𝑥]. 

Some longer examples 

Before starting with some longer examples I should explain that what you are about to 
see will seem complicated and long-winded to most people. Please make allowances for 
the fact that much more is being explained and defined than in traditional notation. This 
may feel wasteful with familiar material but it is very helpful when you are trying to 
communicate or learn something new. 

Also please bear in mind that what is shown here are mostly definitions, so they are long 
and involved as we have just seen. The notation being defined allows complex ideas to be 
expressed succinctly, which is one of the key goals of notation. 

Flipping a fair coin 

To save space when writing about coin flipping, we can define a type for the possible 
results like this: 

𝐻𝑇 == ℎ𝑒𝑎𝑑𝑠 | 𝑡𝑎𝑖𝑙𝑠. 

Flipping a fair coin, and using the usual assumptions of equal probabilities, we might 
define a probability space, 𝐶, as follows: 
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𝐶𝑜𝑖𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒 

𝑃 ∶ ℙ𝐻𝑇 × ℙℙ𝐻𝑇 × (ℙ𝐻𝑇 → ℝ) 

Ω ∶  ℙ𝐻𝑇 

𝑆 ∶  ℙℙ𝐻𝑇 

𝜇 ∶  ℙ𝐻𝑇 → ℝ 

𝑃 = (Ω , 𝑆 , 𝜇 ) 

Ω = {ℎ𝑒𝑎𝑑𝑠, 𝑡𝑎𝑖𝑙𝑠} 

𝑆 = {{ }, {ℎ𝑒𝑎𝑑𝑠}, {𝑡𝑎𝑖𝑙𝑠}, {ℎ𝑒𝑎𝑑𝑠, 𝑡𝑎𝑖𝑙𝑠}} 

𝜇 = {({ }, 0), ({ℎ𝑒𝑎𝑑𝑠}, 0.5), ({𝑡𝑎𝑖𝑙𝑠}, 0.5), ({ℎ𝑒𝑎𝑑𝑠, 𝑡𝑎𝑖𝑙𝑠}, 1)} 

 

The probability of ℎ𝑒𝑎𝑑𝑠 can then be written as: 

𝑃[𝑃 , Ω , {ℎ𝑒𝑎𝑑𝑠}]. 

Suppose we want a specifically named function that just gives the probability of each 
outcome, i.e. a probability for heads and a probability for tails. It would only allow us to 
write just two things: 

𝑓 [ℎ𝑒𝑎𝑑𝑠] = 0.5 

𝑓 [𝑡𝑎𝑖𝑙𝑠] = 0.5 

but this is just to illustrate the techniques available for defining functions. 

Since this is a very small distribution we could just write: 

𝐴𝑏𝑏𝑟𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓  

𝐶𝑜𝑖𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒 

𝑓 : 𝐻𝑇 → ℝ 

𝑓 = {(ℎ𝑒𝑎𝑑𝑠, 0.5), (𝑡𝑎𝑖𝑙𝑠, 0.5)} 

 

This style of definition uses the idea that a function is really just a set of paired inputs and 
outputs. 

A style that extends to much bigger distributions conveniently is this: 

𝐴𝑏𝑏𝑟𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓  

𝐶𝑜𝑖𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒 

𝑓 : 𝐻𝑇 → ℝ 

𝑑𝑜𝑚[𝑓 ] = {ℎ𝑒𝑎𝑑𝑠, 𝑡𝑎𝑖𝑙𝑠} 

∀𝑟 ∶ 𝐻𝑇 | 𝑟 ∈ 𝑑𝑜𝑚[𝑓 ] ∙ 𝑓 [𝑟] = 𝑃[𝑃 , Ω , 𝑟] 

 

Note that all the objects and rules defined in the 𝐶𝑜𝑖𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒 schema (the box) 
earlier are imported into this schema at the start, just by writing 𝐶𝑜𝑖𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒. 
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Alternatively, using lambda notation to specify the function, we could write: 

𝐴𝑏𝑏𝑟𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓  

𝐶𝑜𝑖𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒 

𝑓 : 𝐻𝑇 → ℝ 

𝑓 = 𝜆 𝑟 ∶ 𝐻𝑇 | 𝑟 ∈ 𝐻𝑇 ∙ 𝑃[𝑃 , Ω , 𝑟] 

 

The lambda notation for defining functions can be read as ‘𝑓  is the function that maps a 
result, 𝑟, from the set “heads-or-tails”, to its probability 𝑃[𝑃 , Ω , 𝑟].’ 

Another alternative is to give the probabilities directly rather than refer back to the 
probability space. Here is that style, with and without lambda notation: 

𝐴𝑏𝑏𝑟𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓  

𝐶𝑜𝑖𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒 

𝑓 : 𝐻𝑇 → ℝ 

𝑓 = 𝜆 𝑟 ∶ 𝐻𝑇 | 𝑟 ∈ 𝐻𝑇 ∙ 0.5 

 

𝐴𝑏𝑏𝑟𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓  

𝐶𝑜𝑖𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒 

𝑓 : 𝐻𝑇 → ℝ 

𝑑𝑜𝑚[𝑓 ] = {ℎ𝑒𝑎𝑑𝑠, 𝑡𝑎𝑖𝑙𝑠} 

∀𝑟 ∶ 𝐻𝑇 | 𝑟 ∈ 𝑑𝑜𝑚[𝑓 ] ∙ 𝑓 [𝑟] = 0.5 

 

With all these definitions the function is the same. It is the behaviour of the function, not 
the style of definition, that matters. 

Creating a probability space from two others 

To demonstrate the idea of combining two probability spaces to make a third, we can use 
the coin flipping probability space above plus a similar one for a coloured spinner, then 
combine them. 

Imagine a ten sided spinner with three segments that are blue and seven that are green. 
As before, here is an abbreviation for the set of possible outcomes: 

𝐵𝐺 == 𝑏𝑙𝑢𝑒 | 𝑔𝑟𝑒𝑒𝑛. 

Using the usual assumptions of equal probabilities, we might define a probability space, 
𝑃 , as follows: 
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𝑆𝑝𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒 

𝑃 ∶ ℙ𝐵𝐺 × ℙℙ𝐵𝐺 × (ℙ𝐵𝐺 → ℝ) 

Ω ∶  ℙ𝐵𝐺 

𝑆 ∶  ℙℙ𝐵𝐺 

𝜇 ∶  ℙ𝐵𝐺 → ℝ 

𝑃 = (Ω , 𝑆 , 𝜇 ) 

Ω = {𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛} 

𝑆 = {{ }, {𝑏𝑙𝑢𝑒}, {𝑔𝑟𝑒𝑒𝑛}, {𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛}} 

𝜇 = {({ }, 0), ({𝑏𝑙𝑢𝑒}, 0.3), ({𝑔𝑟𝑒𝑒𝑛}, 0.7), ({𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛}, 1)} 

 

Now consider the probability space needed to represent a flip of that coin followed by an 
independent spin of the spinner. 

 

𝐶𝑜𝑖𝑛𝐴𝑛𝑑𝑆𝑝𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒 

𝐶𝑜𝑖𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒 

𝑆𝑝𝑖𝑛𝑛𝑒𝑟𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑝𝑎𝑐𝑒 

𝑃 ∶ ℙ(𝐻𝑇 × 𝐵𝐺) × ℙℙ(𝐻𝑇 × 𝐵𝐺) × (ℙ(𝐻𝑇 × 𝐵𝐺) → ℝ) 

Ω ∶  ℙ(𝐻𝑇 × 𝐵𝐺) 

𝑆 ∶  ℙℙ(𝐻𝑇 × 𝐵𝐺) 

𝜇 ∶  ℙ(𝐻𝑇 × 𝐵𝐺) → ℝ 

𝑃 = (Ω , 𝑆 , 𝜇 ) 

Ω = Ω × Ω  

𝑆 = ℙ Ω  

∀ 𝑥 ∶  ℙ (𝐻𝑇 × 𝐵𝐺) | 𝑥 ∈ S ∙ 𝜇 [𝑥] = 𝑠𝑢𝑚[(𝑐, 𝑠) ∶ 𝐻𝑇 × 𝐵𝐺 |(𝑐, 𝑠) ∈ 𝑥 ∙  𝜇 [𝑐] × 𝜇 [𝑠]] 

𝜇 [{ }] = 0 

 

Bayesian modelling 

Bayesian modelling of data is a good area for using specific functions and also involves a 
set of possible truths that is the combination of two things. 

The probability space for most Bayesian methods combines potentially true hypotheses 
with evidence that might be observed. The objective is usually to use the evidence to 
decide how likely it is that each hypothesis is the best of the bunch. Since the type of the 
Bayesian probability space is quite complicated, here are two basic types followed by an 
abbreviation for the type of a Bayes probability space: 

[𝐻𝑌𝑃, 𝐸𝑉𝐼𝐷] 

𝐵𝐴𝑌𝐸𝑆 == ℙ(𝐻𝑌𝑃 ×  𝐸𝑉𝐼𝐷) × ℙℙ(𝐻𝑌𝑃 × 𝐸𝑉𝐼𝐷) × (ℙ(𝐻𝑌𝑃 × 𝐸𝑉𝐼𝐷) → ℝ) 
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We can now define the probability space, giving the definition the name 𝐵𝑎𝑦𝑒𝑠𝑆𝑝𝑎𝑐𝑒 so 
that it can be re-used later. 

𝐵𝑎𝑦𝑒𝑠𝑆𝑝𝑎𝑐𝑒 

𝐵 ∶ 𝐵𝐴𝑌𝐸𝑆 

(Ω, 𝑆, 𝜇) ∶ 𝐵𝐴𝑌𝐸𝑆 

ℎ𝑠 ∶  ℙ 𝐻𝑌𝑃 

𝑒𝑠 ∶  ℙ 𝐸𝑉𝐼𝐷 

𝑖𝑠𝑃𝑟𝑜𝑏𝑆𝑝𝑎𝑐𝑒[(Ω, 𝑆, 𝜇)] 

Ω = ℎ𝑠 × 𝑒𝑠 

𝐵 = (Ω, 𝑆, 𝜇) 

 

In addition to a Bayes Space, we also need functions, 𝑣  and 𝑣 , representing views, 
before and after considering the evidence observed, of the probability that each of the set 
of hypotheses is the best hypothesis. (Traditionally these are called the prior and posterior 
distributions.) We also need a function, 𝑓 , giving the probability of observing particular 
evidence assuming each hypothesis is true. (Traditionally this is called the likelihood 
function.) These are all defined using the probability measure from the probability space. 

 

𝐵𝑎𝑠𝑖𝑐𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 

𝐵𝑎𝑦𝑒𝑠𝑆𝑝𝑎𝑐𝑒 

𝑣 , 𝑣 ∶ 𝐻𝑌𝑃 → ℝ 

𝑓 ∶ 𝐻𝑌𝑃 → (𝐸𝑉𝐼𝐷 → ℝ) 

𝑑𝑜𝑚[𝑣 ] = ℎ𝑠 

𝑣 = (𝜆 ℎ ∶ 𝐻𝑌𝑃 | ℎ ∈ ℎ𝑠 ∙  𝑃[𝐵, Ω, {(ℎ , 𝑒 ): 𝐻𝑌𝑃 × 𝐸𝑉𝐼𝐷 | ℎ = ℎ}]) 

𝑑𝑜𝑚[𝑣 ] = ℎ𝑠 

∀ ℎ ∶ 𝐻𝑌𝑃, 𝑒 ∶ 𝐸𝑉𝐼𝐷 | ℎ ∈ ℎ𝑠 ∧ 𝑒 ∈ 𝑒𝑠 ∙  𝑣 [ℎ]
= 𝑃[𝐵, {(ℎ , 𝑒 ): 𝐻𝑌𝑃 × 𝐸𝑉𝐼𝐷 |  𝑒 = 𝑒}, {(ℎ , 𝑒 ): 𝐻𝑌𝑃 × 𝐸𝑉𝐼𝐷 |  ℎ = ℎ ∧  𝑒
= 𝑒}, ] 

𝑑𝑜𝑚[𝑓 ] = ℎ𝑠 

∀ ℎ ∶ 𝐻𝑌𝑃 | ℎ ∈ ℎ𝑠 ∙ 𝑑𝑜𝑚 𝑓 [ℎ] = 𝑒𝑠 

∀ ℎ ∶ 𝐻𝑌𝑃, 𝑒 ∶ 𝐸𝑉𝐼𝐷 | ℎ ∈ ℎ𝑠 ∧ 𝑒 ∈ 𝑒𝑠 ∙  𝑓 [ℎ][𝑒]
= 𝑃[𝐵, {(ℎ , 𝑒 ): 𝐻𝑌𝑃 × 𝐸𝑉𝐼𝐷 |  ℎ = ℎ}, {(ℎ , 𝑒 ): 𝐻𝑌𝑃 × 𝐸𝑉𝐼𝐷 |  𝑒 = 𝑒} ] 

 

These definitions start off by importing the elements of 𝐵𝑎𝑦𝑒𝑠𝑆𝑝𝑎𝑐𝑒. This makes available 
Ω, 𝑆, 𝜇, ℎ𝑠, and 𝑒𝑠, with the relationships established between them. 

Then each function is defined with statements that establish the domain of the function 
(i.e. the inputs it can handle) and the rule that maps inputs to outputs. In these cases the 
rule uses the probability space. 
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Bayesian modelling with conjugate priors 

One of the easiest ways to do a Bayesian analysis is using ‘conjugate priors’. The beauty 
of this technique is that the distributions representing views before and after using 
evidence can be taken from the same distribution family. All that changes is the value of 
the parameters that select a particular distribution from the distribution family. 

The simplest example is that of tossing an unfair coin to learn about the rate at which it 
turns up heads, long term. Our initial view of the relative probabilities of each possible 
rate of heads can be represented by a probability density distribution from the beta family. 
Our view of the relative probabilities of each possible rate of heads after considering the 
evidence from some tosses of that coin can also be represented by a distribution from the 
beta family. The beta distribution has two parameters that select a particular distribution: 
𝛼 and 𝛽. We can call the values of those parameters before and after considering 
evidence (𝛼 , 𝛽 ) and (𝛼 , 𝛽 ) respectively. 

A second distribution family is also used in this analysis. The binomial family is used to 
state the probability of getting a certain number of heads from a series of tosses, 
assuming the probability of heads is the same on every toss. Two parameters are used to 
select a particular distribution from the binomial family. They are the number of trials (i.e. 
tosses) and the probability of ‘success’ on each trial. 

The function 𝐻 simply maps hypotheses to particular Real numbers. For example, if you 
think the rate of heads is 0.3 then the associated Real number is 0.3. It's almost too 
obvious to mention, but there is a logical difference between a hypothesis and a Real 
number. 
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𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 

𝐵𝑎𝑦𝑒𝑠 𝑆𝑝𝑎𝑐𝑒 

𝐵𝑎𝑠𝑖𝑐 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 

𝑏𝑒𝑡𝑎 ∶  (ℝ × ℝ) → (ℝ → ℝ) 

𝑏𝑖𝑛𝑜𝑚 ∶ (ℕ × ℝ) → (𝐸𝑉𝐼𝐷 → ℝ) 

𝛼 , 𝛽 , 𝛼 , 𝛽 ∶  ℝ 

(𝑛 ,𝑟 ) ∶  ℕ × ℕ 

ℎ𝑠 = {𝑥 ∶  ℝ | 0 ≤ 𝑥 ∧ 𝑥 ≤ 1} 

𝑒𝑠 = {(𝑛, 𝑟) ∶  ℕ × ℕ | 𝑛 ≥ 𝑟} 

(𝑛 ,𝑟 )  ∈ 𝑒𝑠 

𝛼 = 0 

𝛽 = 0 

𝑑𝑜𝑚 𝑏𝑒𝑡𝑎[𝛼 , 𝛽 ] = ℎ𝑠 

∀ ℎ ∶ 𝐻𝑌𝑃 | ℎ ∈ ℎ𝑠 ∙ 𝑣 [ℎ] = 𝑏𝑒𝑡𝑎[𝛼 , 𝛽 ][ℎ] 

𝑑𝑜𝑚[𝑏𝑖𝑛𝑜𝑚] = {(𝑛, 𝑝): ℕ × ℝ |0 ≤ 𝑝 ∧ 𝑝 ≤ 1} 

∀ ℎ ∶ 𝐻𝑌𝑃 | ℎ ∈ ℎ𝑠 ∙  𝑓 [ℎ][(𝑛 , 𝑟 )] = 𝑏𝑖𝑛𝑜𝑚[𝑛 , ℎ][𝑟 ] 

𝑑𝑜𝑚 𝑏𝑒𝑡𝑎[𝛼 , 𝛽 ] = ℎ𝑠 

𝛼 = 𝛼 + 𝑟  

𝛽 = 𝛽 + (𝑛 − 𝑟 ) 

∀ ℎ ∶ 𝐻𝑌𝑃 | ℎ ∈ ℎ𝑠 ∙ 𝑣 [ℎ] = 𝑏𝑒𝑡𝑎[𝛼 , 𝛽 ][ℎ] 

Final thoughts 

These examples give a flavour of the notation that can be used, but probably also look 
rather complicated and perhaps even intimidating on a first look. Bear in mind that these 
examples give vastly more information than typical writing about probabilities and 
distributions. Also, the effect of reading, carefully, each statement and understanding 
what it says is to provide a much clearer understanding of probabilities than can usually 
be achieved. Brevity is not always the key to clarity — not if brevity is achieved by leaving 
the reader to guess the rest. 
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Appendix 

In the elementary theory of probability it is usual to say that a probability space has a set 
of outcomes and then a set of sets of those outcomes. That set of sets needs to be a 
Borel algebra, or Sigma Algebra. In my examples I have simply used powersets of the set 
of outcomes. Why? 

The powerset is a Sigma Algebra, so it has all the properties needed for probability theory 
to work. However, a Sigma Algebra need not be as comprehensive as the powerset, so in 
some situations there is a difference. I prefer the powerset idea because then I can be 
sure that there is no set of outcomes for which there is no defined probability. 

An example is enough to show the issue. Suppose the outcome space is {𝑎, 𝑏, 𝑐, 𝑑}. One 
Sigma Algebra on this set is {{ }, {𝑎, 𝑏}, {𝑐, 𝑑}, {𝑎, 𝑏, 𝑐, 𝑑}}. This excludes 12 subsets and 
means that their probabilities are not available. Having chosen {𝑎, 𝑏, 𝑐, 𝑑} as the set of 
outcomes we would expect to be able to refer to the probability of any subset of these, 
and the way to meet that reasonable expectation is simply to work with the powerset. 
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