
Matthew Leitch Specifying regression 2019

Made in England www.WorkingInUncertainty.co.uk Page 1 of 11

Specifying regression
A TYPICAL NOTATION .. 1

WHAT IS WRONG WITH THIS NOTATION? ... 1

AN ALTERNATIVE STYLE ... 3

EXAMPLES ... 5

EXAMPLE 1: A SIMPLE LINEAR MODEL .. 5
EXAMPLE 2: BAYES SIMPLE LINEAR REGRESSION... 7
EXAMPLE 3: AR[2] FOR A TIME SEQUENCE ... 9

REFERENCES .. 10

APPENDIX.. 11

A typical notation

This article offers some suggestions on how to specify regression models and rules for
making inferences about models from data. It provides an alternative to a long established
style that I find particularly confusing and bizarre, which involves presenting a model
something like this:

𝑦 = 𝛼 + 𝜷𝑿 + 𝜀 , where 𝜀 ~𝑁(𝜇, 𝜎)

What is wrong with this notation?

This notation tends to produce confusion in the following ways:

Confusion between models and model families: The ‘models’ described are usually
formulae with parameters represented by letters (often ancient Greek letters), not by
numbers. In the example above, the parameters are 𝛼, 𝜷, 𝜇, and 𝜎. A specific model
would be one where these parameters have specific values. When Greek letters are
written instead the formula usually represents a family of models that have the same
formula but with different values for parameters. The phrase ‘fit the model’ actually means
‘find the model within the model family that looks like the best choice, given these data.’

Confusion over what the index ranges over: In this style a general rule is presented
almost as if it were just one example. The fact that this is a general rule is conveyed only
by the suffixes and, concerning those, some important information is often unstated. What
does 𝑖 represent? Is this equation true for all the data we already have (and will use to
train the model), or is it true for all imaginable cases, or some other set? A statement that

Matthew Leitch Specifying regression 2019

Made in England www.WorkingInUncertainty.co.uk Page 2 of 11

starts with ‘∀ 𝑖 ∶ ℕ | 𝑖 ∈ ⋯’ (pronounced as ‘For all 𝑖, where 𝑖 is a natural number and a
member of the set of …’) might provide the missing information but is often missing.

Confusion over what ‘distributed’ means in this context: In this notation the idea is
that all the terms except 𝑁 represent numbers or matrices, not distributions or anything
more complex. The last term, 𝜀 , is special because it represents the numbers that make
each equation balance and are also in some way ‘distributed’ Normally.

Despite the claim that 𝜀 ~𝑁(𝜇, 𝜎), which is pronounced ‘𝜀 values are distributed Normally
with parameters 𝜇 and 𝜎’, the reality is that 𝜀 represents a vector of numbers, one for
each equation. A vector of numbers like this is not a distribution, though they may look
like numbers that might have been selected by generating random numbers according to
the Normal distribution. A set of numbers that could have been drawn like this is not the
same, logically, as a probability density function and some vectors might be more typical
of draws from a Normal distribution than others, yet still plausible, or at least possible.

Confusion between the statistical model to fit and the model of reality
assumed: The example formula above is not the model, or even the model family, that is
typically ‘fit’ to the data. The model that is ‘fit’ excludes the 𝜀 term. (Sometimes it is not
even clear whether the model will predict a specific value for 𝑦 or the probability that any
given value for 𝑦 is seen, given the value of 𝑋.)

This reflects an often-used pattern of development in statistics: start by making a bundle
of assumptions about the system to be modelled, then make deductions given those
assumptions. With statistical hypothesis tests you make all those assumptions, plus a ‘null
hypothesis’ assumption, and on the basis of all those you calculate the probability of the
data you have. If it seems very unlikely that the data could be the result of a system that
meets all your assumptions you can conclude that the null hypothesis very probably is not
correct provided all the other assumptions are met. Often the other assumptions are as
doubtful as the null hypothesis and so the test is not really applicable.

Making extra assumptions is usually unavoidable with regression models that only make
point predictions rather than probabilistic predictions. Strictly speaking, if a model cannot
predict all the data in your data set then that model is wrong. It cannot be correct. The
probability of its being true is zero. But with point prediction regression models it is
traditional practice to assume that there are other factors not captured in the model that
drive the outcomes and just try to minimise the gaps between the predictions and reality.
That often means minimising the square of the differences between predictions and data.
Justifying the choice of fitting rule usually involves making assumptions about the data
that, if true, would make the fitting rule optimal in some way.

A Bayesian approach using a probabilistic regression model makes such additional
assumptions unnecessary. All relevant assumptions are in the model itself.

In the notation to which I am objecting, the significance of the full formula (such as the
one given to start above) is not usually clear but is either a combination of the model
family plus an additional assumption about the data, or is a statement of the assumed true
process that is generating the data. It is confusing to mix information about the statistical
model to be applied and the assumed process that generates the model. This confusion is
all the greater when the process is described with mathematical modelling ideas, not in
terms of the real entities involved, such as traders on a market, or crops in fields, or birds
on an island.

Matthew Leitch Specifying regression 2019

Made in England www.WorkingInUncertainty.co.uk Page 3 of 11

In short, this style confuses models with reality. It also encourages confusion over what
the statistician already knows or assumes about the process being studied and what has
to be inferred from the data.

Missing information: The rule for ‘fitting’ the model to data is often not specified and
often is crucial to the results achieved. The calculations to fulfil the fitting rule are also
frequently unstated even though sometimes they are very complicated and, again, crucial
to the results achieved.

An alternative style

A clear and correct way to specify regression should clearly separate information about the
various objects used in regression modelling. It should avoid confusing assumptions about
the situation with features of the mathematical model, or with the method of fitting. It
should do this without any unspecified or clashing mathematical types.

The following need to be clearly distinguished and specified:

 The data used, which can be in various different structures, and will usually include
a training set, used to set up the model, and a test set or prediction set, used to
elicit new predictions from the model.

 Simple data transformations to use on those data, such as differencing.
 Model families and model instances, being formulae and formulae with specific

numbers for parameters respectively.
 Model learning rules, such as Maximum Likelihood Estimation and Bayesian

updating.
 Model learning rule proofs, to show that the model learning rule, if adhered to,

provides good results. This might include additional assumptions about the real
system, such as the distribution of differences between the model’s point
predictions and reality.

 Model learning processes, such as formulae, iterative processes, and statistical
hypothesis tests (implausibility inferences). These will be chosen to try to meet the
requirements of the model learning rule.

 Model learning process proofs, to establish that model learning processes work,
or that they work to a particular extent.

 Model performance measures, used to evaluate regression models in practical
applications.

Where the Bayesian model learning rule is used the result is not one selected model, but a
probability distribution linking every model considered to its probability of being the best
model. So, in order to use this information in a decision, or to make a prediction, the list
of things to be specified may also need to include:

 A prediction combination rule, such as Bayesian Model Averaging, to combine
the predictions of each possible model into one.

 A decision making rule that somehow combines the information given by
calculating the decision using each possible model.

Guidelines to implement this style and so improve the clarity of regression specifications
are as follows:

Matthew Leitch Specifying regression 2019

Made in England www.WorkingInUncertainty.co.uk Page 4 of 11

 Use the terms in bold (above), consistently so that readers know what they are
being given at each point.

 Keep the elements of the specification separate so that there is no confusion as to
the status of formulae presented.

 Miss no element out, by accident. If an element is too complex, lengthy, or outside
the scope of a document then reference to another source or acknowledge the gap.

Here is an overview showing some of the well-known techniques classified.

 Point predictions Probabilistic predictions

Type of prediction Model’s prediction is just a
single value – a ‘best
estimate’.

Model’s prediction is a
probability distribution or
probability density distribution
that can give the probability or
density of particular values.

Model families Multiple linear regression,
common time series models
(AR, MA, ARIMA, ARCH,
GARCH, EWMA, Holt Winters)

General Linear Model, linear
function plus noise, Monte
Carlo simulation of a point
forecasting model

Model learning rules OLS MLE, Bayesian

Model learning
processes

OLS formula, iterative search Iterative search, Bayes
formula, MCMC, Bayes factors

Model learning process
proofs

OLS formula proof, proofs
about asymptotic behaviour,
experiments

Bayes formula proof, proofs
about asymptotic behaviour,
experiments

Model performance
measures

RMSE, MAPE Brier Score, IGN, Information
Gain

And here are some well-known types of data and transformations of data.

Data structures Set of cases (Xs with Y), time sequence, multiple time sequences,
panel data

Data transformations Differencing, logs, percentage differences, log of percentage
differences, arithmetic and geometric returns

The following section gives illustrative specifications for some common situations.

Matthew Leitch Specifying regression 2019

Made in England www.WorkingInUncertainty.co.uk Page 5 of 11

Examples

Example 1: A simple linear model

The first example begins with specification of the data involved. Imagine that we have
one variable that is going to be used to predict another. For example, perhaps we are
trying to predict the pressure inside a tyre from the temperature inside it. In this example
both variables are numbers.

We have some cases already where we know the value of both variables, so that enables
us to learn about the relationship between them. These data form our training set. The
type of a pair of values, one for each variable, is a pair of real numbers. To make it easier
to distinguish visually between the predictor and predicted variables, we define two types,
both of which are just alternative names for a real number1.

𝑋 == ℝ

𝑌 == ℝ

𝑋 now represents the type of the predictor variable while 𝑌 represents the type of the
predicted variable.

However, our training set is not necessarily a set of unique pairs of values because some
pairs might be identical, but it is still important to distinguish between them. So, we
represent the training set as a ‘bag’, which has the number of times each pair occurs, for
each pair that actually does occur at least once. This formula gives the name of the
training set, 𝑡𝑟, and specifies its mathematical type.

𝑡𝑟 ∶ (𝑋 × 𝑌) → ℕ

Having specified the data involved it is time to specify a model instance and the model
family that creates it. A specific model instance in this type of regression takes as input
a number, representing a possible value for the predictor variable, and it returns a
number, representing the predicted variable. Here is its name and type.

𝑚 ∶ 𝑋 → 𝑌

This model, 𝑚, gives a best estimate for the predicted number rather than a more useful
and informative probability distribution for possible values.

The model family is a function that creates this type of model. It has two parameters:
the inputs to the model family function, 𝛼 and 𝛽, both of which are real numbers. It
returns as output a model instance that makes predictions. Here I have called the model
family 𝑠𝑙𝑚, which is short for simple linear model.

𝑠𝑙𝑚 ∶ (ℝ × ℝ) → (𝑋 → 𝑌)

The model family is specified like this:

∀ 𝛼, 𝛽: ℝ, 𝑥: 𝑋 ∙ 𝑠𝑙𝑚[𝛼, 𝛽][𝑥] = 𝛼 + 𝛽 × 𝑥

1 The notation used here is the mathematical toolkit of Z (see Spivey, 1989). It is longer than the usual
notation but not necessarily harder to understand. It leaves nothing unsaid, which is a great advantage
when you want to know and understand everything.

Matthew Leitch Specifying regression 2019

Made in England www.WorkingInUncertainty.co.uk Page 6 of 11

In words, for all 𝛼 and 𝛽, and all 𝑥, where 𝑥 is of the type 𝑋 (a real number), the model
output for 𝑥 as input is equal to 𝛼 + 𝛽𝑥. Instances of this model family are models with
specific values for 𝛼 and 𝛽. For example,

∀ 𝑥: 𝑋 ∙ 𝑠𝑙𝑚[2,3][𝑥] = 2 + 3 × 𝑥

The rule by which the relationship between the two variables is learned and encoded into
the model is conventionally one that finds values for 𝛼 and 𝛽 that minimise the value of
the squares of the differences between the model’s predictions and the actual data,
summed across the training set. This is the OLS criterion, short for Ordinary Least
Squares.

This model learning rule is specified as follows:

𝛼 , 𝛽 ∶ ℝ

¬∃(𝛼 , 𝛽): ℝ | 𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × 𝑦 − (𝛼 + 𝛽 𝑥)]

< 𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × 𝑦 − (𝛼 + 𝛽 𝑥)]

This rule says that 𝛼 and 𝛽 are values for the parameters of the model such that
there is no other pair of values with a lower sum of squares of differences between
prediction and predicted values, summed across the training set. Without doing more
mathematics, it seems that there could be more than one pair of values of the parameters
that has this property.

The purpose of a model learning rule proof is to show that the model learning rule, if
adhered to, provides good results. Quite a lot of work has been done with this model
family and model learning rule and several properties of their performance have been
proved. This material is too complicated and lengthy to include in this illustration.

The model learning process is simply to calculate the parameters using formulae,
specified as follows:

�̅� =
𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × 𝑥]

𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)]]

𝑦 =
𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × 𝑦]

𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)]]

𝛽 =
𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × (𝑥 − �̅�) × (𝑦 − 𝑦)]

𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × (𝑥 − �̅�)]

𝛼 = 𝑦 − 𝛽 × �̅�

The model learning process proof, in this case, is simply a proof that the formulae do
indeed provide the minimum sum of squared differences. It involves partial differentiation
to find the values that minimise the sum of squared differences. Here is a simple version
where 𝑥 represents just one number, not a vector of predictors as in the general model
family. Let 𝑆 be the sum of squared differences.

𝑆 = 𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × 𝑦 − (𝛼 + 𝛽 × 𝑥)]

Differentiate first with respect to 𝛼.

𝜕𝑆

𝜕𝛼
= −2 × 𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × 𝑦 − (𝛼 + 𝛽 × 𝑥)]

Matthew Leitch Specifying regression 2019

Made in England www.WorkingInUncertainty.co.uk Page 7 of 11

At the minimum,

𝜕𝑆

𝜕𝛼
= 0

𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × 𝑦 − (𝛼 + 𝛽 × 𝑥)] = 0

𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × 𝑦] =

𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × 𝛼] +

𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × 𝛽 × 𝑥]

𝑦 = 𝛼 + 𝛽 × �̅�

Substitute this back into the original expression for 𝑆 and differentiate with respect to 𝛽.

𝑆 = 𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑠] ∙ 𝑡𝑟[(𝑥, 𝑦)] × 𝑦 − (𝑦 − 𝛽 × �̅� + 𝛽 × 𝑥)]

𝑆 = 𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑠] ∙ 𝑡𝑟[(𝑥, 𝑦)] × (𝑦 − 𝑦) + 𝛽 × (𝑥 − �̅�)]

𝜕𝑆

𝜕𝛽
= −2 × 𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦)

∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × (𝑦 − 𝑦) + 𝛽 × (𝑥 − �̅�) × (𝑥 − �̅�)]

At the minimum,

𝜕𝑆

𝜕𝛽
= 0

𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × (𝑦 − 𝑦) + 𝛽 × (𝑥 − �̅�) × (𝑥 − �̅�)] = 0

𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × (𝑦 − 𝑦) × (𝑥 − �̅�)] −

𝛽 × 𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × (𝑥 − �̅�)] = 0

So, provided that 𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × (𝑥 − �̅�)] ≠ 0, i.e. that
there is some variation in the 𝑥 values in the training set:

𝛽 =
𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × (𝑦 − 𝑦) × (𝑥 − �̅�)]

𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑡𝑟[(𝑥, 𝑦)] × (𝑥 − �̅�)]

𝛼 = 𝑦 − 𝛽 × �̅�

There is just one pair of values for 𝛼 and 𝛽 that give the lowest sum of squared
differences and the formulae give those values.

One possible model performance measure that could be used with this model is the
Mean Absolute Percentage Error (MAPE). To define this we need to specify a test set:

𝑡𝑒 ∶ (𝑋 × 𝑌) → ℕ

And now the performance measure itself.

𝑀𝐴𝑃𝐸[𝑡𝑒, 𝑚] =
𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑒] ∙ 𝑡𝑒[(𝑥, 𝑦)] ×

(𝑚[𝑥] − 𝑦)
𝑦

]

𝑠𝑢𝑚[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑒] ∙ 𝑡𝑒[(𝑥, 𝑦)]]

Example 2: Bayes simple linear regression

Matthew Leitch Specifying regression 2019

Made in England www.WorkingInUncertainty.co.uk Page 8 of 11

The Bayesian approach to simple linear regression requires a model that gives probabilities
for particular values, not a point prediction, has a different rule for model learning, and all
the other things that follow from those differences.

Once again we have some cases already where we know the value of both variables so
that enables our model to learn about the relationship between them. These data are our
training set.

𝑋 == ℝ

𝑌 == ℝ

𝑡𝑟 ∶ (𝑋 × 𝑌) → ℕ

Having specified the data involved it is time to specify a model instance and the model
family that creates it. A specific model instance in this type of regression takes as input
a number, representing a possible value for the predictor variable, and it returns a
probability density function, giving a probability density for any possible value for the
predicted number.

𝑚 ∶ 𝑋 → (𝑌 → ℝ)

This model gives the more useful and informative probability distribution for possible
values.

The model family is a function that creates this type of model. It has three parameters,
the inputs to the function, 𝛼, 𝛽, and 𝜎 all of which are real numbers. It returns as output a
model instance that makes probability predictions. Here I have called it 𝑝𝑠𝑙𝑚, which is
short for probabilistic simple linear model.

𝑝𝑠𝑙𝑚 ∶ (ℝ × ℝ × ℝ) → (𝑋 → (𝑌 → ℝ))

The model family is specified like this:

∀ 𝛼, 𝛽, 𝜎: ℝ, 𝑥: 𝑋 ∙ 𝑝𝑠𝑙𝑚[𝛼, 𝛽, 𝜎][𝑥] = 𝑁[𝛼 + 𝛽 × 𝑥, 𝜎]

In words, for all 𝛼, 𝛽, and 𝜎 and all 𝑥, where 𝑥 is of the type 𝑋 (a real number), the model
output for 𝑥 as input is a Normal distribution with mean equal to 𝛼 + 𝛽 × 𝑥 and variance
𝜎 .

An alternative form for this model family specification is:

∀ 𝛼, 𝛽, 𝜎: ℝ, 𝑥: 𝑋 ∙ 𝑝𝑠𝑙𝑚[𝛼, 𝛽, 𝜎][𝑥] = 𝛼 + 𝛽 × 𝑥 + 𝑁[0, 𝜎]

Where the '+' sign between 𝛼 + 𝛽 × 𝑥 and 𝑁[0, 𝜎] is understood to mean that the 𝛼 +

𝛽 × 𝑥 is added to the value in the domain of the Normal distribution.

The model learning rule by which the relationship between the two variables is learned
in a Bayesian approach is fundamentally different. Instead of picking one possible
combination of values to define the single best model instance, the Bayesian approach is
to work out the relative probability of each possible combination of values for those
parameters. This is done by taking an initial view of the probabilities of each combination
being the best (the prior probability distribution) then updating it in light of the data in the
training set to create a revised view of the probabilities of each combination being the
best (the posterior probability distribution).

This model learning rule can be specified as follows:

Matthew Leitch Specifying regression 2019

Made in England www.WorkingInUncertainty.co.uk Page 9 of 11

𝑝𝑟𝑖𝑜𝑟, 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟: (ℝ × ℝ × ℝ) → ℝ

𝑘: ℝ

∀𝛼, 𝛽, 𝜎: ℝ ∙ 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟[𝛼, 𝛽, 𝜎] =

𝑘 × 𝑝𝑟𝑖𝑜𝑟[𝛼, 𝛽, 𝜎] × 𝑝𝑟𝑜𝑑[(𝑥, 𝑦): 𝑋 × 𝑌 |(𝑥, 𝑦) ∈ 𝑑𝑜𝑚[𝑡𝑟] ∙ 𝑝𝑠𝑙𝑚[𝛼, 𝛽, 𝜎][𝑥][𝑦] [(,)]]

Where 𝑘 is a constant chosen to make the posterior distribution a probability density
function, with an area under the curve of 1. The 𝑝𝑟𝑜𝑑[…] part of this is the probability of
the actual 𝑦 values of the training set pairs, assuming each potential combination of 𝛼, 𝛽,
and 𝜎. In other words, what probability would each possible model instance predict for the
actual values of 𝑦 in the training set, given the 𝑥 values.

The model learning rule proof is, again, a bit too complicated to include in this
illustration but is just a proof of Bayes’ rule applied to probability density functions.

Various alternative model learning processes are needed depending on the form of the
prior probability distribution. One particular choice of prior probability distribution formulae
is known as a conjugate prior, where the form of the posterior probability distribution is
the same – with just the parameters changing value. In this case the parameters of the
posterior distribution can be calculated directly from the parameters of the prior
distribution and the data.

In other cases this kind of calculation is not possible and an approximate, iterative method
might be needed.

All these methods require quite advanced mathematics and will not be specified in this
article. Their model learning process proofs are even more complicated and also will
not be included in this article.

A potentially suitable prediction combination rule for this distribution of model
probabilities is Bayesian Model Averaging, which is the mean of predictions over all
possible models, weighted by their posterior probabilities.

One suitable model performance measure for this kind of model is Information Gain.
This is the information provided by a probabilistic prediction model beyond that provided
by some simpler probabilistic prediction model. It is usually averaged across the test set.

Example 3: AR[2] for a time sequence

The AR[2] model family is part of an even larger family and is used to predict the next
number of a sequence. The idea of AR[2] is that the next number in the sequence is
predicted from the previous two. The rule that does that is a linear function learned by
applying regression to earlier numbers in the sequence. The model makes a point
prediction for the next value, not a probabilistic one.

The data involved in this example consist of a single sequence of numbers representing
measurements taken at successive points in time. One sequence provides both the
training and test data, with a first section of the sequence used for training and the rest
(just the last two values) used for testing.

𝑡𝑠: 𝑠𝑒𝑞 ℝ

#𝑡𝑠 > 4

Matthew Leitch Specifying regression 2019

Made in England www.WorkingInUncertainty.co.uk Page 10 of 11

In the notation above, the overall time sequence, which consists of Real numbers, is called
𝑡𝑠.

We need at least five values in the sequence in order to learn the linear rule. In practice
we would like considerably more terms in the sequence.

A specific model instance in this type of regression takes as input two numbers, being
the previous two numbers in the sequence, and returns a predicted value for the next
number in the sequence.

𝑎𝑟2𝑚 ∶ (ℝ × ℝ) → ℝ

The model family is a function that creates this type of model. It has three parameters,
the inputs to the model family function, 𝛼, 𝛽, and 𝛾, all of which are real numbers. It
returns as output a model instance that makes predictions. Here is the name and type.

𝑎𝑟2𝑚𝑓 ∶ (ℝ × ℝ × ℝ) → ((ℝ × ℝ) → ℝ)

The model family is specified like this:

∀ 𝛼, 𝛽, 𝛾: ℝ, 𝑡 , 𝑡 : ℝ ∙ 𝑎𝑟2𝑚𝑓[𝛼, 𝛽, 𝛾] = 𝑎𝑟2𝑚 ∧

𝑎𝑟2𝑚[𝑡 , 𝑡] = 𝛼 + 𝛽 × 𝑡 + 𝛾 × 𝑡

In words, for all 𝛼, 𝛽, and 𝛾, and all 𝑡 and 𝑡 which are Real numbers, the model output
for 𝑡 and 𝑡 as input is equal to 𝛼 + 𝛽𝑡 + 𝛾𝑡 . Instances of this model family are models
with specific values for 𝛼, 𝛽, and 𝛾. For example,

∀ 𝑡 , 𝑡 : ℝ ∙ 𝑎𝑟2𝑚𝑓[1,2,3][𝑡 , 𝑡] = 1 + 2 × 𝑡 + 3 × 𝑡

The rule by which the relationship between the two previous values and the next encoded
into the model is conventionally one that finds values for 𝛼, 𝛽, and 𝛾 that minimise the
total of the squares of the differences between the model’s predictions and the actual
data, summed across the time sequence. This is the OLS criterion again.

This model learning rule can be specified as follows:

𝛼 , 𝛽 , 𝛾 ∶ ℝ

¬∃(𝛼 , 𝛽 , 𝛾): ℝ | 𝑠𝑢𝑚[𝑖: ℕ |𝑖 ∈ 3. . #𝑡𝑠 ∙ 𝑡𝑠[𝑖] − (𝛼 + 𝛽 𝑡𝑠[𝑖 − 2] + 𝛾 𝑡𝑠[𝑖 − 1])]

< 𝑠𝑢𝑚[𝑖: ℕ |𝑖 ∈ 3. . #𝑡𝑠 ∙ 𝑡𝑠[𝑖] − (𝛼 + 𝛽 𝑡𝑠[𝑖 − 2] + 𝛾 𝑡𝑠[𝑖 − 1])]

As with Example 1, the simple linear model, this says that there is no other combination of
parameter values that is better. That there is only one such combination of values can be
proved as shown in Example 1. The model learning rule proof, model learning process and
its proof, and typical model performance measure are all as for the simple linear model in
Example 1.

References

Spivey, J.M. (1989). The Z Notation. Prentice-Hall, Englewood Cliffs, NJ. Available online
at: http://spivey.oriel.ox.ac.uk/mike/zrm/zrm.pdf

Matthew Leitch Specifying regression 2019

Made in England www.WorkingInUncertainty.co.uk Page 11 of 11

Appendix

In defining the criteria for model ‘fitting’ I represented the training set as a bag of 𝑋 and 𝑌
values. A slightly more familiar looking approach is to represent the training set with a
sequence of 𝑋 values and a sequence of 𝑌 values. This way the familiar index 𝑖 is
involved.

Here is the OLS criterion done in this way, with 𝑥 and 𝑦 taking the place of 𝑡𝑠:

𝑥 ∶ 𝑠𝑒𝑞 𝑋

𝑦 ∶ 𝑠𝑒𝑞 𝑌

𝑚𝑓 ∶ 𝑄 → (𝑋 → 𝑌)

𝑞 ∶ 𝑄

¬∃ 𝑞 : 𝑄 | 𝑠𝑢𝑚[𝑖 ∶ ℕ |𝑖 ∈ 1. . #𝑥 ∙ 𝑦[𝑖] − 𝑚𝑓[𝑞] 𝑥[𝑖]] < 𝑠𝑢𝑚[𝑖 ∶ ℕ | 𝑖

∈ 1. . #𝑥 ∙ (𝑡[𝑖] − 𝑚𝑓[𝑞][𝑥[𝑖]])]

Another conventional refinement is to use the 𝑎𝑟𝑔𝑚𝑖𝑛 function, which returns the set of
arguments giving the minimum value for the function. In this case that would be
something like this:
𝑞 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛[𝑞 ∶ 𝑄 ∙ 𝑠𝑢𝑚[𝑖 ∶ ℕ | 𝑖 ∈ 1. . #𝑥 ∙ (𝑡[𝑖] − 𝑚𝑓[𝑞][𝑥[𝑖]])]]

And here is the MLE criterion:

𝑥 ∶ 𝑠𝑒𝑞 𝑋

𝑦 ∶ 𝑠𝑒𝑞 𝑌

𝑚𝑓 ∶ 𝑄 → (𝑋 → (𝑌 → ℝ))

𝑞 ∶ 𝑄

¬∃ 𝑞 : 𝑄 | 𝑝𝑟𝑜𝑑[𝑖 ∶ ℕ |𝑖 ∈ 1. . #𝑥 ∙ 𝑚𝑓[𝑞] 𝑥[𝑖] 𝑦[𝑖] > 𝑝𝑟𝑜𝑑[𝑖 ∶ ℕ | 𝑖 ∈ 1. . #𝑥 ∙ 𝑚𝑓[𝑞][𝑥][𝑦]]

Or using 𝑎𝑟𝑔𝑚𝑎𝑥,

𝑞 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥[𝑞 ∶ 𝑄 ∙ 𝑝𝑟𝑜𝑑[𝑖 ∶ ℕ |𝑖 ∈ 1. . #𝑥 ∙ 𝑚𝑓[𝑞] 𝑥[𝑖] 𝑦[𝑖]]

And, finally, the Bayesian approach:

𝑥 ∶ 𝑠𝑒𝑞 𝑋

𝑦 ∶ 𝑠𝑒𝑞 𝑌

𝑚𝑓 ∶ 𝑄 → (𝑋 → (𝑌 → ℝ))

𝑞𝑠 ∶ ℙ 𝑄

𝑝𝑟𝑖𝑜𝑟 ∶ 𝑄 → ℝ

𝑝𝑜𝑠𝑡 ∶ 𝑄 → ℝ

𝑑𝑜𝑚[𝑝𝑟𝑖𝑜𝑟] = 𝑞𝑠

𝑑𝑜𝑚[𝑝𝑜𝑠𝑡] = 𝑞𝑠

∀ 𝑞 ∶ 𝑄 | 𝑞 ∈ 𝑞𝑠 ∙ 𝑝𝑜𝑠𝑡[𝑞]

= 𝑝𝑟𝑖𝑜𝑟[𝑞] ×
𝑝𝑟𝑜𝑑[𝑖 ∶ ℕ |𝑖 ∈ 1. . #𝑥 ∙ 𝑚𝑓[𝑞][𝑥[𝑖]][𝑦[𝑖]]]

𝑠𝑢𝑚[𝑞 : 𝑄 | 𝑞′ ∈ 𝑞𝑠 ∙ 𝑝𝑟𝑜𝑑[𝑖 ∶ ℕ |𝑖 ∈ 1. . #𝑥 ∙ 𝑚𝑓[𝑞′][𝑥][𝑦]]]

